首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fire affects grassland composition by selectively influencing recruitment. Some exotic species can increase their abundance as a consequence of fire-stimulated seed germination, but response may depend on seed age. Rumex acetosella L. (Polygonaceae, sheep's sorrel) is a cosmopolitan herb that has invaded NW Patagonia's grasslands. This species forms persistent soil seed banks and increases after disturbances, particularly fire. We studied how fire and seed longevity influence R. acetosella germination. In 2008, we conducted laboratory experiments where we exposed different-aged seeds (up to 19 years old) to heat, smoke, charcoal, ash and control treatments. Total percentage germination and mean germination time depended on both seed age and fire treatment. Germination of younger seeds decreased with increasing temperature. There was no general pattern in germination responses of different-aged seeds to smoke, charcoal and ash. While smoke improved the germination of fresh seeds, charcoal decreased germination. Germination of untreated seeds was negatively correlated with seed age, and mean germination time increased with seed age. In most treatments, fresh seeds had lower germination than 1-5-year-old seeds, indicating an after-ripening requirement. Smoke stimulates R. acetosella germination, causing successful recruitment during post-fire conditions. Fresh seeds are particularly responsive to fire factors, possibly because they have not experienced physical degradation and are more receptive to environmental stimuli. Knowing the colonisation potential from the soil seed bank of this species during post-fire conditions will allow us to predict their impact on native communities.  相似文献   

2.
Abstract The germination response of seeds from fire‐prone vegetation to fire‐related cues such as heat shock and smoke has usually been studied by applying the cues singly. The few studies that have applied the cues in combination have shown that interactions between the cues are possible. Here, the response of seeds from a number of species to combined heat shock and smoke is reported. Heat shock (25, 50, 75 and 100°C) and aerosol smoke (0, 5, 10 and 20 min) were applied factorially to nine species that form soil seed banks in the Sydney region of south‐eastern Australia. These species were from Epacridaceae (four species), Myrtaceae (four species) and Cyperaceae (one species) and ranged from fire‐sensitive obligate seeders to fire‐tolerant facultative resprouters. Germination of Dracophyllum secundum R. Br and Sprengelia monticola (A. Cunn. ex DC.) Druce was low and did not respond to the germination cues. The positive response of Gahnia sieberiana Kunth and Kunzea ambigua (Sm.) Druce to heat shock and smoke was independent and additive. The positive response of Kunzea capitata Rchb. to the interaction between heat shock and smoke was synergistic, and the response of Baeckea diosmifolia Rudge and Baeckea imbricata (Gaertn.) Druce was unitive, with germination increase only occurring following combined heat and smoke application. Epacris coriacea A. Cunn. ex DC. and Epacris obtusifolia Sm. had low levels of dormancy and hence it was not possible to find a fire response. Gahnia sieberiana and K. capitata responded differently to the combination of heat shock and smoke than has previously been reported. Germination of species from habitats that are infrequently burnt was not affected by heat shock or smoke. Low‐intensity fire or patches within fire may be important for seedling recruitment as the 50°C heat shock stimulated germination in four of the five species that responded to the heat cue, and germination of Baeckea imbricata declined within the 100°C heat shock treatment. Germination of one species, Baeckea imbricata, was only stimulated by a specific combination of cues, indicating that regeneration niches may be narrow for some species and that the application of a range of heat and smoke doses is required to find such responses. Of the species positively responding to heat shock and smoke, a requirement for both cues was prevalent, therefore the response to these cues in isolation cannot be relied upon to give a true indication of the fire response of a species.  相似文献   

3.
Fire recurrently affects Mediterranean-type climate (MTC) regions causing major implications on the structure and dynamics of vegetation. In these regions, it is important to know the fire regime for which reliable fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees where shrubs can provide dendroecological evidence for reconstructing fire history at landscape scale. We studied the dendroecological potential of the shrub Fabiana imbricata to reconstruct fire history at landscape scale in MTC grasslands of northwestern Patagonia. In order to accomplish this, we combined spatio-temporal information of recorded fires from the study area with the age structure of F. imbricata shrublands obtained from dendroecological methods. Shrubland age structure correctly described how often fires occurred in the past. In rocky outcrops, where fires cannot reach, individuals are long-lived and heterogeneous in age; while downhill, individuals are young and shrublands are even-aged. Five pulses of massive recruitment were found: three of these coincided with three known fires; the remaining two had not been recorded before. A bi-variated analysis showed that F. imbricata recruited mainly during two years after fire, and the spatial distribution of pulses coincided with the fire map. Information derived from shrubland age structure could be used to estimate fire regime parameters such as fire return interval at landscape or community scale. For instance, we estimated a fire return interval of nine years at landscape scale and ranging from 11 to 24 years at community scale (shrubland). Our results in northwestern Patagonia grasslands showed that the F. imbricata chronology can be used to complement other information sources such as remote sensing and operational databases improving the knowledge about fire regime. The present study demonstrates that is possible to utilize shrubs as a dendroecological data source to study fire history in regions where tree cover is absent.  相似文献   

4.
Fire is a non-selective disturbance that impacts equally plant species that could be selected differentially by livestock. Post-fire recruitment dynamics is an important ecological process that has been barely studied in Patagonian grass species. This work analyzes the effect of fire on seed germination, seedling growth, and survival of Pappostipa speciosa (ex Stipa speciosa) and Festuca pallescens, two dominant perennial grasses from NW Patagonia that differ in palatability. We hypothesized that physical and chemical factors derived from fire differentially affect recruitment of these species. We performed experiments in the field and under laboratory and greenhouse conditions to study the integral effect of fire and of related abiotic factors (i.e., smoke, heat, charcoal, and ash) on different phases of recruitment of both species. Experimental burning promoted P. speciosa emergence over time, but they did not affect F. pallescens total emergence. Experimental burning decreased P. speciosa seedling growth (i.e., few leaves and small size), but they did not affect seedling survival. Smoke from laboratory experiments stimulated P. speciosa germination. Exposing F. pallescens seeds to 120°C decreased germination and seedling growth. Fire might act as a selective force on recruitment of both species, as well as changing competitive interactions during postfire regeneration. The effect of fire on the recruitment dynamics of the studied species depended strongly on both intrinsic species characteristics and meteorological conditions.  相似文献   

5.

Background and Aims

The role of fire as a germination cue for Mediterranean Basin (MB) plants is still unclear. The current idea is that heat stimulates germination mainly in Cistaceae and Fabaceae and that smoke has a limited role as a post-fire germination cue, in comparison with other Mediterranean-type ecosystems (MTEs), suggesting that fire-stimulated germination is less relevant in the MB than in other MTEs. However, recent studies showed that the assembly of Mediterranean plant communities is strongly driven by post-fire germination, suggesting an important role for fire as a germination cue. We hypothesize that both heat and smoke have important effects on the different post-fire recruitment processes of MB species (e.g. level and rate of germination and initial seedling growth).

Methods

To ascertain the role of heat and smoke in the post-fire germination response of MB woody plants, a germination experiment was performed with seven heat and two smoke treatments on 30 MB woody species from seven different families, including species with water-permeable seeds and species with water-impermeable seeds.

Key Results

Heat stimulated the germination (probability and rate) of 21 species and smoke in eight species, out of the 30 species studied. In addition, six species showed enhanced initial seedling growth after the smoke treatments.

Conclusions

The results suggest that both heat and smoke are important germination cues in a wide range of MB woody species and that fire-cued germination in woody plants of the MB may be as important as in other MTEs.  相似文献   

6.
Vegetative resprouting, soil or canopy-stored seed banks, post-fire seed dispersal and germination are the major strategies by which plants regenerate after fires. Post-fire regeneration modes of plants are commonly based on the presence or absence of post-fire recruitment as well as the presence or absence of post-fire resprouting. High temperatures, smoke and ash are characteristics of fire and the post-fire environment. We hypothesized that heat, smoke, ash and pH will have differential effects on seed germination depending on species’ post-fire regeneration strategies: serotinous vs. nonserotinous (which may have soil seed banks) and resprouters vs. nonresprouters (which may be obligate seeders). Here we examined the effects of these factors on the germination of 27 common east Australian species. Most serotinous species supported our hypothesis by showing no effect or reduced germination in response to heat. However, contrary to our prediction, all nonserotinous nonresprouting species also showed no effect or reduced germination in response to heat. Smoke, contrary to our hypothesis, had a negative or no effect on all serotinous and nonresprouting species, but no clear directional effect on serotinous and resprouting species. Supporting our hypotheses, ash and high pH showed positive or nonsignificant effects on the germination of all serotinous resprouting species, and a negative or no effect on nonserotinous resprouting species. However, contrary to our prediction, it had a negative or no effect on the serotinous nonresprouting species and no clear effect on nonserotinous nonresprouting species. We also discovered large differences in germination responses between conspecific populations that varied in their degree of resprouting. Although our data confirmed several of our predictions, the overall conclusion is that the responses of seeds to heat, smoke, ash and pH are not tightly associated with post-fire regeneration functional types. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Restoration of calcareous grasslands was promoted as a conservation strategy to reduce the risks imposed by habitat loss and fragmentation. Restoration already provided promising results for several taxa, however some specialist species still fail at colonising restored habitats. We aimed at explaining this lack of colonisation success for three calcareous grasslands specialist species in southern Belgium: Pulsatilla vulgaris; Trifolium montanum; and, Veronica prostrata. We studied: (i) germination in control and outdoor conditions (cold, heat, smoke and litter effects); (ii) in situ seedling emergence patterns (effects of seed addition and germination microsites availability). The three species were able to germinate in Petri dishes in the absence of treatment. Cold enhanced the germination of V. prostrata. Fire-related treatments (heat shock and smoke exposure) did not enhance germination and were deleterious to V. prostrata. Litter cover improved P. vulgaris emergence in outdoor containers, but had a negative effect on V. prostrata. In the field, V. prostrata did not emerge. T. montanum seedlings were observed in the reference grasslands when seeds were added, but not in the restored grasslands. P. vulgaris emerged in the reference grasslands, and to a lower degree in the restored grasslands. The combination of seed addition and microsites availability for seed germination resulted in enhanced seedling emergence for P. vulgaris. Our results suggest that seed and microsite availability can be limiting factors for site colonisation, but the combination of both is likely much more limiting. Lower seedling emergence in restored than in reference grasslands suggests a lower habitat quality in restored grasslands.  相似文献   

8.
Ecosystems perturbed from their natural disturbance regimes are more vulnerable to establishment and dominance of exotic plant species. Restoration efforts that reintroduce fire have achieved mixed success in reducing the abundance of exotic plants. The responses of many native species to fire are well known; fire-adapted species respond directly (heat and smoke cue germination) and indirectly (post-fire environment benefits seedling survivorship and growth) to fire. However, the direct and indirect effects of fire are unknown for most exotic plant species. We tested the direct and indirect effects of fire on two exotic invaders of Asian origin, Ailanthus altissima and Lonicera maackii, in North American woodlands. To quantify the direct effects of fire, we compared germination rates of seeds exposed to varying levels of heat and smoke in a laboratory and placed at different soil depths during a prescribed fire in the field. We examined the indirect effects of fire by comparing seedling recruitment in burned and unburned woodland plots. Results indicate that neither A. altissima nor L. maackii have germination cues associated with fire. However, both species have greater seedling recruitment in burned as compared to unburned areas in the field. Although seeds of these invasive species are not specifically adapted to fire, they still benefit from post-fire environments and pose a challenge to restoration of fire-maintained ecosystems. Future studies using our approach will allow land managers to better predict how communities will respond to restoration efforts and to understand variability observed in past restoration projects.  相似文献   

9.
The effects of fire on the vegetation vary across continents. However, in Neotropical fire‐prone grasslands, the relationship between fire and seed germination is still poorly understood, while their regeneration, especially after strong anthropogenic disturbance, is challenging for their conservation. In the present study, we assessed diversity of germination strategies in 15 dominant herbaceous species from Neotropical altitudinal grasslands (locally known as campos rupestres). We exposed seeds to several fire‐related treatments. We also compared germination between regularly and post‐fire fruiting species. Finally, we investigated the diversity of dormancy classes aiming at better understanding the biogeography and phylogeny of seed dormancy. Germination strategies varied among families. Velloziaceae and Xyridaceae produced non‐dormant, fast‐germinating seeds. Cyperaceae and Poaceae showed an extremely low or null germination due to a high proportion of unviable or embryo‐less seeds. The seeds of campo rupestre grasslands are fire resistant, but there is no evidence that fire triggers germination in this fire‐prone ecosystem. Although heat and charred wood did not promote germination, smoke enhanced germination in one grass species and decreased the mean germination time and improved synchrony in Xyridaceae and Velloziaceae. Fire had a positive effect on post‐fire regeneration by stimulating fruit set in some Cyperaceae and Poaceae species. These species produced faster germinating seeds with higher germination percentage and synchrony compared to regularly fruiting Cyperaceae and Poaceae species. This strategy of dispersion and regeneration seems to be an alternative to the production of seeds with germination triggered by fire. Physiological dormancy is reported for the first time in several clades of Neotropical plants. Our data help advance the knowledge on the role of fire in the regeneration of Neotropical grasslands.  相似文献   

10.
Abstract. Large‐scale disturbances, notably fire and grazing, structure grass and shrubland dynamics in semi‐arid environments. We studied early post‐fire succession in two burned grasslands, one unburned grassland, and one shrubland near the burned area. We observed three processes: (1) establishment of a ‘phantom’ community comprised of fugitive species. Although transient, these species increase diversity and recharge the seed bank before the next disturbance; (2) regeneration of the original community by persistence of resprouter species and by auto‐replacement; (3) early stages of invasion by seedlings of the shrub Fabiana imbricata, which germinate next to shrubland and create new F. imbricata patches. Weed invasion was principally due to the ruderal exotic species Verbascum thapsus from the nearby road verge and by rapid increase of Rumex acetosella cover, another exotic species present before the fire. Although post‐fire climatic conditions are particularly important in semi‐arid environments, succession depends greatly on the regeneration strategies and dispersal abilities of the species present in the burned area. The phantom community occurs only at the first stage of succession when there is little competition for resources. We could call this process ‘the race for occupation of the area’. The second stage, when competition for resources becomes progressively more important, could be called ‘the effort to maintain space’.  相似文献   

11.
The Cerrado (Brazilian savanna) is a biodiversity hotspot with a history of fire that goes back as far as 10 million years. Fire has influenced the evolution of several aspects of the vegetation, including reproduction and life cycles. This study tested how fire by‐products such as heat and smoke affect the germination of six species common to two Cerrado open physiognomies: wet grasslands and the campo sujo (grassland with scattered shrubs and dwarf trees). We subjected seeds collected in northern Brazil to heat shock and smoke treatments, both separately and combined, using different temperatures, exposure times, and smoke concentrations in aqueous solutions. High temperatures and smoke did not break seed dormancy nor stimulate germination of the Cerrado study species. However, seeds were not killed by high temperatures, indicating that they are fire‐tolerant. Our findings differed from those of other fire‐prone ecosystems (mostly of Mediterranean vegetation), where fire stimulates germination. Moreover, we provide important information regarding germination strategies of non‐woody Cerrado plants, showing the importance of considering the tolerance of seeds to high temperatures when evaluating fire‐related traits in fire‐prone ecosystems.  相似文献   

12.
The effects of smoke, heat, darkness and cold stratification on seed germination were examined for 40 species with various life history attributes. These species establish in early successional stages on a volcano and are distributed in cool temperate zones of northern Japan. Smoke decreased seed germination in 11 species and increased it in one species, Leucothoe grayana . Germination of Polygonum longisetum was enhanced by a combination of smoke and cold, and that of Aralia elata by smoke and heat. Heat increased germination for three species and decreased it for one. Cold stratification broke dormancy in seeds of 11 species. Continuous darkness decreased germination of 22 species and did not increase germination for any species, showing that approximately half of the species require light for maximum germination. Although most species are sun plants that establish in early stages of succession and/or in disturbed areas, smoke and heat do not enhance germination of these species after disturbance, even when the disturbance is fire. Germination of slender and/or large seeds tends to be decreased more by smoke, probably because of their larger surface area. Light is more important than smoke and heat for detection of disturbance and for seed germination in this region. However, despite the low fire frequency in the region, germination of a few species was increased by fire-derived stimuli.  相似文献   

13.
BACKGROUND AND AIMS: Germination studies of species from fire-prone habitats are often focused on the role that fire plays in breaking dormancy. However, for some plant groups in these habitats, such as the genus Leucopogon (Ericaceae), dormancy of fresh seeds is not broken by fire cues. In the field, these same species display a flush of seedling emergence post-fire. Dormancy and germination mechanisms therefore appear complex and mostly unknown. This study aimed to identify these mechanisms by establishing dormancy class and testing the effects of a set of typical germination cues, including those directly related to fire and entirely independent of fire. METHODS: To classify dormancy, we assessed seed permeability and embryo morphology, and conducted germination experiments at seasonal temperatures in incubators. To test the effects of fire cues on germination, factorial combinations of smoke, heat and dark treatments were applied. Ageing treatments, using burial and seasonal incubation, were also tested. Germination phenology was established. KEY RESULTS: Seeds were dormant at release and had underdeveloped embryos. Primary dormancy of the study species was classified as morphophysiological. Seasonal temperature changes overcame primary dormancy and controlled timing of germination. Fire cues did not break primary dormancy, but there was a trend for smoke to enhance germination once this dormancy was overcome. CONCLUSIONS: Despite the fact that fire is a predominant disturbance and that many species display a flush of emergence post-fire, seasonal temperatures broke the primary physiological dormancy of the study species. It is important to distinguish between fire being responsible for breaking dormancy and solely having a role in enhancing levels of post-fire germination for seeds in which dormancy has been overcome by other factors. Biogeographical evidence suggests that morphological and physiological factors, and therefore seasonal temperatures, are likely to be important in controlling the dormancy and patterns of post-fire germination of many species in fire-prone regions.  相似文献   

14.

Fire is a key factor triggering ecological processes in old-growth grasslands and savannas and could have strong implications for reproduction via seeds for the herbaceous layer. In the Neotropical savannas, grasses show strong synchronous post-fire flowering, and their reproduction is often considered fire-dependent, with their massive post-fire seed production being suggested as a source of population maintenance. However, literature lacks studies to provide evidence of fire-dependent flowering and no study has assessed the quality of the post-fire seed production. Therefore, we aimed to describe a phenological pattern across early-flowering Neotropical savanna grasses in both recently burnt and unburnt cerrado communities addressing three questions: (1) Do the early-flowering species rely on fire for reproduction via seeds? (2) If no, what are the effects of fire on their reproductive phenology? (3) Does the massive seed production in post-fire cerrado communities lead to high-quality seeds? We recorded the reproductive phenology of nine early-flowering grasses for 17 weeks in unburnt and recently burnt cerrado communities. We collected the seeds, estimated the production of fertile seeds, and tested germination. No species showed a pattern of fire-dependent reproduction. Fire stimulated earlier flowering while reproduction in the unburnt community was related to continuous rainfall. Seed production following fire was of low quality, and no species produced?>?7% fertile seeds. Seed germination remained below 50% for most species. Post-fire seed production of early-flowering species led to poor seed quality, suggesting a constraint to the recruitment of new individuals of early-flowering Neotropical savanna grasses in recently burnt cerrados.

  相似文献   

15.
The influence of high temperatures (dry heat and hot water) on germination of seven Mediterranean Leguminosae species typical of fire-prone ecosystems in southern Spain is analyzed, in order to know the response of seeds to wildfires and the possible implications in their regeneration after this disturbance. Seeds were heated to a range of temperatures (50 °–150 °C) and exposure times (1–60 min) similar to those registered in the upper soil layers during wildfires. Germination tests were carried out in plastic Petri dishes over 60 days. In general, the degree of seed germination promotion by dry heat treatments showed a wide interspecific variation, although the final germination level was increased in all the studied species except for Scorpiurus muricatus. The thermal pretreatment of 50 °C, however, was not effective for germination in any species, and rising the temperature to 70 °C only slightly enhanced the germination in Cytisus patens. The preheatings of 90 °C (5 and 10 min), 120 °C (5 and 10 min), and 150 °C (1 min) were the most effective in promoting seed germination. Hot water (100 °C) scarification also increased the final germination level in all cases, with the exception of C. patens. The germination rates after preheating were much lower than in mechanically scarified seeds and closely resembled those of the untreated seeds, except for C. reverchonii, whose seed germination rate decreased with heat. The response of species to heat shock had no clear relationship with life trait or with the specific post-fire regeneration strategy (obligate seeder or facultative resprouter). Those species coexisting in the same habitats had different heat optimal requirements for seed germination, an strategy suggested by some authors as minimizing interspecific competition in the secondary succession started after fire.  相似文献   

16.
Abstract Many species found in fire‐prone habitats that possess a soil‐stored seedbank only recruit seedlings in large numbers following a fire. Fire‐related germination cues are presumably used by these seeds as signals that a fire has occurred, and would include the heating that occurs in the soil and the combustion products of burning vegetation, smoke and charcoal. Three Sydney species, Grevillea buxifolia (Sm.) R. Br., Grevillea sericea (Sm.) R. Br. and Grevillea speciosa (Knight) McGillivray, were studied for the interactive effects of these cues on their germination. The germination of all species was found to increase with both smoke and heat treatments. While smoke always had a greater influence than heat, the relationship between the two treatments varied with species. The presence of two fire‐related germination cues should allow these species to take better advantage of the recruitment opportunities of the post‐fire environment.  相似文献   

17.
Seeds of native grasses are an important food source for granivorous finches throughout the tropical savannas of northern Australia. The iconic Gouldian finch (Erythrura gouldiae), a threatened species endemic to these savanna grasslands, relies almost exclusively on the grass seeds of annual Sorghum spp. when breeding, and appears to time breeding with the availability of these seeds. Fire is common throughout the savanna grasslands of northern Australia and has the potential to alter Sorghum spp. seed germination and plant reproductive phenology which in turn could alter the Gouldian finch breeding phenology window. This study examines if the temporal relationship between breeding by Gouldian finches in the north‐east Kimberley region of Australia relates to fire and Sorghum stipoideum seed phenology. The availability of S. stipoideum seed was monitored at Gouldian finch breeding sites in association with local fire history and Gouldian finch breeding data. The effect of experimental fire (heat and smoke) on S. stipoideum seed dormancy and germination was also investigated. We found that the first heavy rainfalls preceded germination of S. stipoideum in November/December. Synchronous seed set by S. stipoideum plants the following March/April coincided with the start and duration of the Gouldian finch breeding season. The timing of dry season fires had no relationship with seed dormancy or the phenology of seed germination and seed set. Nor did the effects of smoke or heat affect seed dormancy and germination. These findings support the importance of the seed phenology of annual grass species, such as S. stipoideum, to breeding Gouldian finches, and also suggest that the occurrence of fire at a breeding site in the previous year does not alter the S. stipoideum seed or finch breeding window. The implications of these results for threatened Gouldian finch ecology and management are discussed in relation to previously published fire impacts on S. stipoideum seed nutrition and finch breeding site selection.  相似文献   

18.
Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100°C, 120°C or 150°C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31°C, 4 hours at 43°C, 3 hours at 33°C and 14 hours at 18°C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits.  相似文献   

19.
We examined the response of seeds to heat in four geographically restricted and one widespread species of shrubby Darwinia from the fire-prone region of southeastern Australia. These shrubs are killed by fire and rely on seed germination after a fire to maintain populations. We replicated the germination trials across several sites and several fruiting seasons for most species. Seeds had a high level of viability and were largely dispersed in a dormant state, except in D. glaucophylla, where seed dormancy varied significantly across fruiting seasons. The indehiscent fruit of all species readily imbibes moisture when wet and seeds are not considered to be ‘hard-seeded’. All species had increased seed germination in response to a limited range of heating temperatures (generally 80–100°C). Higher temperatures killed increasing proportions of seeds. This pattern was broadly consistent across species, population and seasons, although the proportion of seeds whose germination was promoted by heat varied from high (D. diminuta, D. fascicularis, D. glaucophylla) to moderate (D. biflora, D. procera). Our work highlights the importance of heat as a mechanism for influencing germination in species that are not hard-seeded. Consequently, soil temperatures during a fire should strongly influence post-fire germination levels in Darwinia. The roles of other cues that promote germination, i.e. smoke, seasonal temperatures and their interactions with heat, remain to be investigated.  相似文献   

20.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号