首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
In this paper it is shown that the adsorption of 5-adenosine monophosphate (5-AMP) onto precipitated calcium phosphate exhibits a sigmoidal profile as revealed by isotherms at 45 °C. This result indicates a cooperative behavior in the adsorption of 5-AMP. The relationship between adsorption capacity and surface area of the sedimented matrix may be interpreted as an indication that there is a monolayer of the adsorbed nucleotide on the solid surface. The pH dependence of adsorption suggests that the negatively charged phosphoryl group of 5-AMP interacts with a positively charged site (possibly Ca2+) on the matrix surface. The adsorption of the nucleotide is markedly decreased at pH values above 8.0. The Dixon-like plot of the effect of pH suggests an inhibitory role of hydroxyl ions in the adsorption of 5-AMP. At pH 7.5, other anions such as pyrophosphate, tripolyphosphate and carbamyl phosphate also inhibit the adsorption of the nucleotide, probably by interacting with its adsorption site. We suggest that these phosphorylated molecules could have played a role in chemical evolution by modulating the amount of nucleotides adsorbed onto mineral surfaces. The significance of these phenomena in chemical evolution is discussed.  相似文献   

2.
8,3′-Anhydro-8-mercapto-9-β-D-xylofuranosyladenine (8,3′-s-cycloadenosine) was phosphorylated with cyanoethyl phosphate and DCC to 5′-phosphate. After 6-amino group was benzoylated, the monophosphate was treated with DCC to give a cyclic phosphate (II). The structure of compound II was elucidated as 8,3′-s-cycloadenosine 2′,5′-cyclic phosphate by UV, NMR and CD spectra, as well as enzymatic hydrolyses. When compound II was desulfurized with Raney nickel, cordycepin 2′,5′-cyclic phosphate (III) was obtained. Although compound III could be obtained from cordycepin 5′-phosphate with DCC, the yield was extremely low.  相似文献   

3.
4.
The specific activity of ALA-S extracts prepared from lyophilized soya callus growing in light or dark showed a striking increase when tissue cultures were grown in the presence of pyridoxal phosphate (PyP) in order to complex aminothiols. By contrast ALA-D specific activity in the light grown callus was reduced on incorporation of PyP into the growth medium. Cysteine (Cy) added to the culture medium did not influence the specific activities of either enzyme.  相似文献   

5.
Glycerol-plasticized pea starch/α-zirconium phosphate (PS/ZrP) nanocomposite films with different loading levels of α-zirconium phosphate (α-ZrP) were prepared by a casting and solvent evaporation method. The effects of the α-ZrP on the structure and properties of the PS/ZrP films were characterized by Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile testing. The results indicated that hydrogen bonds formed between pea starch (PS) and α-ZrP, which improved the compatibility between PS and α-ZrP. Compared with the neat PS, the tensile strength (σb) and elongation at break (εb) of the PS/ZrP nanocomposite films were significantly enhanced with an increase in α-ZrP content. The maximum values of σb and εb reached 9.44 MPa and 47.5%, respectively, at 0.3% α-ZrP and 25% glycerol as plasticizer. The moisture uptake of the nanocomposite films, measured in an environment with 92% relative humidity, was reduced by the addition of α-ZrP. The structure and properties of pea starch-based films were modified and improved by the incorporation of α-ZrP.  相似文献   

6.
7.
α-Tocopheryl phosphate (α-TP), a water-soluble analogue of α-tocopherol, is found in humans, animals, and plants. α-TP is resistant to both acid and alkaline hydrolysis and may exert its own function in this form in vivo. In this study, the uptake, hydrolysis, and antioxidant action of α-TP were measured using α-TP with a deuterated methyl group, CD(3), at position 5 of the chroman ring (α-TP(CD3)). The hydrolysis of α-TP(CD3) was followed by measuring α-tocopherol containing the CD(3) group, α-T(CD3), in comparison to unlabeled α-tocopherol, α-T(CH3). α-TP(CD3) was incubated with cultured cells, and the intracellular α-T(CD3) formed was measured with HPLC-ECD and GC-MS. α-TP(CD3) was also administered to mice for 4 weeks by mixing in the diet, and α-T(CD3) was measured in plasma, liver, brain, heart, and testis to compare with endogenous unlabeled α-T(CH3). It was found that α-TP(CD3) was taken in and hydrolyzed readily to α-T(CD3) in cultured cells and in mice. The hydrolysis of α-TP(CD3) in cell culture medium was not observed. α-TP protected primary cortical neuronal cells from glutamate-induced cytotoxicity, and α-TP given to mice reduced the levels of lipid peroxidation products in plasma and liver. These results suggest that α-TP is readily hydrolyzed in vivo to α-T, which acts as an antioxidant, and that α-TP may be used as a water-soluble α-T precursor in intravenous fluids, in eye drops, or as a dietary supplement.  相似文献   

8.
9.
In the present study, the partitioning of α-lactalbumin, β-lactoglobulin, and cheese whey proteins in aqueous two-phase system of polyvinylpyrrolidone-potassium phosphate is investigated. The partitioning of proteins in this system depends on the polymer and salt weight percents in feed, temperature, and pH. The orthogonal central composite design is used to study the effects of different parameters on partitioning of α-lactalbumin and β-lactoglobulin. A second order model is proposed to determine the impact of these parameters. The results of the model show that the weight percent of the salt in feed has a large effect on the protein partitioning. The weight percent of polyvinylpyrrolidone in the feed increases the partitioning coefficients. By increasing the temperature, the viscosity of polyvinylpyrrolidone is reduced and the protein can easily be transferred from one phase to the other phase. The pH of the aqueous two phase system can alter the protein partitioning coefficient through the variation of the protein net charge.  相似文献   

10.
An inorganic phosphate (P(i))-restricted diet is important for patients with chronic kidney disease and patients on hemodialysis. Phosphate binders are essential for preventing hyperphosphatemia and ectopic calcification. The sodium-dependent P(i) (Na/P(i)) transport system is involved in intestinal P(i) absorption and is regulated by several factors. The type II sodium-dependent P(i) transporter Npt2b is expressed in the brush-border membrane in intestinal epithelial cells and transports P(i). In the present study, we analyzed the phenotype of Npt2b(-/-) and hetero(+/-) mice. Npt2b(-/-) mice died in utero soon after implantation, indicating that Npt2b is essential for early embryonic development. At 4 wk of age, Npt2b(+/-) mice showed hypophosphatemia and low urinary P(i) excretion. Plasma fibroblast growth factor 23 levels were significantly decreased and 1,25(OH)(2)D(3) levels were significantly increased in Npt2b(+/-) mice compared with Npt2b(+/+) mice. Npt2b mRNA levels were reduced to 50% that in Npt2b(+/+) mice. In contrast, renal Npt2a and Npt2c transporter protein levels were significantly increased in Npt2b(+/-) mice. At 20 wk of age, Npt2b(+/-) mice showed hypophosphaturia and reduced Na/P(i) cotransport activity in the distal intestine. Npt2b(+/+) mice with adenine-induced renal failure had hyperphosphatemia and high plasma creatinine levels. Npt2b(+/-) mice treated with adenine had significantly reduced plasma P(i) levels compared with Npt2b(+/+) mice. Intestinal Npt2b protein and Na(+)/P(i) transport activity levels were significantly lower in Npt2b(+/-) mice than in the Npt2b(+/+) mice. The findings of the present studies suggest that Npt2b is an important target for the prevention of hyperphosphatemia.  相似文献   

11.
1. Optimum conditions were established for determining the activities of the NADP(+)-linked enzymes, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, in mosquito tissues. 2. The activity of each dehydrogenase was determined in samples of mosquitoes of different ages throughout the life-span. The specific-activity curves attained maximal values in the pupal or early adult period. From these maxima an 81% decrease in glucose 6-phosphate-dehydrogenase and 67% decrease in 6-phosphogluconate-dehydrogenase activities occurred after the tenth day of adult life; a 77% decrease in isocitrate-dehydrogenase activity occurred before the fifth day. 3. The activity differences were found in different body regions as well as in whole organisms. 4. Starvation of the larva or adult did not result in decreases in enzyme activity. 5. These findings support the hypothesis that the activities of enzymes that form NADPH are related to the biosynthetic activity, for the enzyme activities increased during the period of cellular growth and decreased during the aging period.  相似文献   

12.
13.
14.
Phosphatidylinositol phosphate kinase (PIPK) catalyzes a key step controlling cellular contents of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], a critical intracellular messenger involved in vesicle trafficking and modulation of actin cytoskeleton and also a substrate of phospholipase C to produce the two intracellular messengers, diacylglycerol and inositol-1,4,5-trisphosphate. In addition to the conserved C-terminal PIPK catalytic domain, plant PIPKs contain a unique structural feature consisting of a repeat of membrane occupation and recognition nexus (MORN) motifs, called the MORN domain, in the N-terminal half. The MORN domain has previously been proposed to regulate plasma membrane localization and phosphatidic acid (PA)-inducible activation. Recently, the importance of the catalytic domain, but not the MORN domain, in these aspects was demonstrated. These conflicting data raise the question about the function of the MORN domain in plant PIPKs. We therefore performed analyses of PpPIPK1 from the moss Physcomitrella patens to elucidate the importance of the MORN domain in the control of enzymatic activity; however, we found no effect on either enzymatic activity or activation by PA. Taken together with our previous findings of lack of function in plasma membrane localization, there is no positive evidence indicating roles of the MORN domain in enzymatic and functional regulations of PpPIPK1. Therefore, further biochemical and reverse genetic analyses are necessary to understand the biological significance of the MORN domain in plant PIPKs.Key words: membrane occupation and recognition nexus (MORN) domain, phosphatidylinositol phosphate kinase, phosphatidic acid, Physcomitrella patensPhosphoinositides (PIs) are minor membrane phospholipds that play pivotal roles in various signal transduction cascades involved in development and stress response via the regulation of cytoskeletal organization, ion channel activation and vesicle trafficking.1,2 These are derivatives of phosphatidylinositol (PtdIns) produced by phosphorylation of the 3-, 4- and 5- positions of the inositol ring.2 To address the roles of PIs, enzymes involved in their production have been extensively studied using biochemical and molecular biological approaches. Of these enzymes, phosphatidylinositol monophosphate kinases (PIPKs) catalyze the reaction producing phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] that is a substrate of phospholipase C and phosphatidylinositol 3-kinase, and also acts as an intracellular messenger involved in the regulation of F-actin organization and activity of ion channels.13 Although PtdIns(4,5)P2 is produced by sequential phosphorylation by phosphatidylinositol 4-kinase, producing phosphatidylinositol-4-phosphate [PtdIns(4)P], and then by PIPK,1,2 the cellular levels of PtdIns(4)P are much higher compared to PtdIns(4,5)P2.46 Thus, a restriction step controlling cellular PtdIns(4,5)P2 contents is mediated by PIPKs, indicating the importance of PIPK regulation in various kinds of physiological processes.The roles of plant PIPKs have been established in growth regulation, such as polarized tip growth of root hairs and pollen tubes, via their localization at plasma membranes.712 It is worth to note that plant PIPKs contain a unique structure consisting of a repeat of a membrane occupation recognition nexus (MORN) motifs, called MORN domain, at the N-terminal region and a C-terminal PIPK catalytic domain, except for AtPIP5K10 and AtPIP5K11 from Arabidopsis thaliana, which lack the N-terminal MORN domain.13 The MORN domain was first identified as plasma membrane-binding module in junctophilin14 and the involvement of the MORN domain in plasma membrane localization was proposed for A. thaliana AtPIP5K1 and AtPIP5K3.9,15,16Another remarkable feature of eukaryotic PIPKs is dependency of the enzymatic activity on phosphatidic acid (PA).17,18 Indeed, PA-dependent activation of PIPKs has been observed in A. thaliana and in the moss Physcomitrella patens,6,19,20 as with animal type I PIPKs.21 Although much less is known about how PA activates PIPKs in plants, biochemical analyses suggested the involvement of the MORN domain in PA-dependent activation of AtPIP5K1.15Based on above findings, it was proposed that plasma membrane-localization and PA-dependent activation of plant PIPKs might be regulated by the MORN domain.9,15,16 In contrast, we recently demonstrated the critical involvement of the C-terminal half containing the catalytic domain of plant PIPKs in both plasma membrane-localization and PA-dependent activation.22 Thus, the function of the MORN domain remains elusive in plant PIPKs.As shown earlier, the N-terminal half of P. patens PpPIPK1 containing the MORN domain enhances its catalytic activity.22 Thus, to identify the region required for the activation of PpPIPK1, we further dissected the N-terminal half into 3 regions; the N-terminal region (amino acid nos. 1–154), the MORN repeat (amino acid nos. 155–316) and the linker region (amino acid nos. 338–452), and made deletion mutants of PpPIPK1 as shown in Figure 1A. Using Pfu Turbo DNA polymerase (Stratagene, La Jolla, USA), DNA fragments corresponding to deletion mutants lacking the N-terminal and N-terminal plus the MORN repeat, designated PpPIPK1ΔN and PpPIPK1ΔN-MORN, respectively, were amplified with primer sets; one is M_PIPK1_fb (5′-GGC AAG CAC GTG TAT AAT GTC TGA AGG GCT T-3′) and XhoIPIPK1 (5′-TAA ACT CGA GTT AGC TGG GTA GGA GGA AA-3′) and the other is M_PIPK1_f7 (5′-AGA GAA CAC GTG TAT AAT GTC TGA CTT CTA CGT CGG T-3′) and XhoIPIPK1. For building an expression plasmid for a deletion mutant lacking the MORN repeat, designated PpPIPK1ΔMORN, the N-terminal region and PpPIPK1ΔN-MORN were amplified with primer sets, M_PIPK1_fb and M_PIPK1_r3 (5′-TTG TAA GTC TCG GGT GCC ATT TGA GAG CTC-3′) M_PIPK1_f6 (5′-GAG CTC TCA AAT GGC ACC CGA GAC TTA CAA-3′) and XhoIPIPK1, respectively, using Pfu Turbo DNA polymerase and resultant DNA fragments were fused by PCR with a primer set, M_PIPK1_fb and XhoIPIPK1 using the same enzyme. These PCR products were digested with Pml1 and XhoI and inserted into Pml1-XhoI digested pPICZB (Invitrogen) to construct expression plasmids, pPICZB-PpPIPK1ΔN, pPICZB-PpPIPK1ΔN-MORN and pPICZB-PpPIPK1ΔMORN. Transformation of P. pastoris X-33 cells with the above expression plasmids, colony PCR of transformants and following expression, purification and western blot analysis of His-tagged recombinant proteins were performed as described previously.6 The PIPK activity assay using purified His-tagged proteins was carried out as described previously23 with the modifications.6Open in a separate windowFigure 1Functional dissection of the N-terminal region of PpPIPK1 identifies positive regulatory regions. (A) His-tagged recombinant PpPIPK1 proteins. A repetition of eight MORN motifs (grey boxes) and the conserved catalytic domain (black box) are indicated in wild type and mutant PpPIPK1s. The MORN repeat and junction of internal deletion are indicated by amino acid position numbers. (B) In vitro lipid kinase activity of His-tagged recombinant proteins. The activities of recombinant proteins bound to Ni-NTA agarose beads were assayed with PtdIns4P. (C) In vitro PA-dependent lipid kinase activity of His-tagged proteins. The activities of recombinant proteins bound to Ni-NTA agarose beads were assayed with PtdIns4P with 143 µM PA. Top and bottom arrowheads represent reaction products PtdIns(4,5)P2 and lysoPtdIns(4,5)P2, respectively.Biochemical analyses of these enzymes after expression in yeast P. pastoris X-33 cells followed by purification showed that deletion of the N-terminal region (PpPIPK1ΔN) reduced PpPIPK1 activity ca 40% compared to the full length enzyme, whereas loss of the MORN repeat (PpPIPK1ΔMORN) had no significant effect (Fig. 1B). In agreement, a mutant lacking four MORN repeats of the total eight repeats showed no difference in the activity compared the full length enzyme (data not shown). These results indicate a positive role of the N-terminal region, but not the MORN repeats, on PpPIPK1 activity. However, these findings differ from those obtained with AtPIP5K1, where the MORN domain represses enzymatic activity.15 Interestingly, PpPIPK1ΔN-MORN containing the linker and catalytic regions showed higher enzymatic activity of ca 23 % compared to the full length PpPIPK1 (Fig. 1B). The C-terminal half only containing the catalytic domain of PpPIPK1 and thus lacking the linker region showed a reduced activity.22 It is therefore proposed that the linker region carries a positive regulatory element. Although details are unknown, negligible effects of the N-terminal and MORN domains for the enzymatic activity has been indicated in AtPIP5K3 from A. thaliana.11 Moreover, it is noteworthy that PA-dependent activation was not affected by any deletion as shown in Figure 1C, confirming that the N-terminal half is not involved in PA dependency of the PpPIPK1 activity.22Our results indicated that the MORN domain is not involved in the regulation of the catalytic activity in PpPIPK1. Similarly, the function of the MORN domain found in the accumulation and replication of chloroplasts 3 (ARC3) was not resolved. ARC3 is an FtsZ homologue involved in chloroplast division24 and the only protein containing the MORN repeats other than PIPKs in A. thaliana. It was shown that the ARC3 MORN domain did not interact with any stromal plastid division components.25 Moreover, there are reports representing functions of the MORN domain other than plasma membrane binding. Human amyotrophic lateral sclerosis 2 (ALS2), a guanine nucleotide exchange factor (GEF) specific to the small GTPase Rab5, contains the MORN domain at the central region that is essential for the GEF activity but not for interaction with Rab5.26 In contrast, specific interaction of the MORN domain with Rab-E GTPases and resultant enzymatic activation was recently demonstrated for AtPIP5K2.12 It is interesting that these results are inconsistent with each other in terms of interaction of the MORN domain with small GTPases.Taken together, with no function of the MORN domain in plasma membrane localization of PpPIPK1 and AtPIP5K1,22 the function of the MORN domain is still unknown, despite its high conservation plants PIPKs. Alternatively, based on the findings of ARC3, ALS2 and AtPIP5K2,12,25,26 the function of the MORN domain possibly varies among PIPK isoforms and may thus have multifunctional roles. Therefore, it is necessary to identify interaction partners for the MORN domain of each plant PIPKs and to analyze phenotypes of transgenic plants carrying MORN domain-lacking PIPKs during developmental process and environmental stress responses.  相似文献   

15.
1. The concentrations of NADP and NADPH(2) in homogenates of rat liver (expressed as mug./g. wet wt. of tissue homogenized) were compared with values obtained from intact samples of liver taken from the same female rat. With 0.25m-sucrose alone as the suspending medium, or in combination with tris buffer or 0.01-0.1m-nicotinamide, considerable decreases in the sum of the NADP+NADPH(2) concentrations were occasionally observed during 30min. storage of homogenates at 0 degrees . However, addition of 0.5m-nicotinamide+5mm-tris buffer to 0.25m-sucrose for use as a suspending medium maintained the sum of the NADP+NADPH(2) concentrations in homogenates at the level found in intact tissue for at least 30min. at 0 degrees . 2. The effects of freezing intact tissue and homogenates in liquid nitrogen before the extraction of NADP and NADPH(2) were studied. Freezing alone appears to convert a significant amount (approx. 30%) of liver NADPH(2) into an equivalent amount of NADP in intact tissue. This is discussed in terms of the ;bound NADP' reported by Burch, Lowry & Von Dippe (1963). 3. The intracellular distributions of NADP and NADPH(2) in intracellular fractions of rat liver were studied by using a modified centrifuging scheme that allows extraction of the isolated fractions to be performed within 45min. of killing the animal. Approx. 50% of the total NADP+NADPH(2) was found in the large-particle fractions and the remaining 50% was mostly in the soluble fraction of the cell. 4. Further investigations are reported on the nature of ;bound NADP' in rat liver. Most of this material appears associated with the ;nuclear' (containing nuclei, debris, erythrocytes etc.) or large-mitochondrial fractions, or both, obtained by low-speed centrifuging of rat-liver homogenates. 5. Although in some experiments the variations produced in the concentration of NADPH(2) present in large-particle fractions were followed by similar changes in that of ;bound NADP', in other cases no such direct relationship was obtained. Addition of phenazine methosulphate, for example, consistently lowered the concentration of NADPH(2) yet raised the concentration of ;bound NADP' in rat-liver mitochondrial fractions.  相似文献   

16.
《Process Biochemistry》1999,34(2):109-114
The effects of phosphate supply and aeration on cell growth and PHB accumulation were investigated in Azotobacter chroococcum 23 with the aim of increasing PHB production. Phosphate limitation favoured PHB formation in Azotobacter chroococcum 23, but inhibited growth. Azotobacter chroococcum 23 cells demonstrated intensive uptake of orthophosphate during exponential growth. At the highest phosphate concentration (1·5 g/litre) and low aeration the amount of intracellular orthophosphate/g residual biomass was highest. Under conditions of fed-batch fermentation the possibility of controlling the PHB production process by the phosphate level in the cultivation medium was demonstrated. A 36 h fed-batch fermentation resulted in a biomass yield of 110 g/litre with a PHB cellular concentration of 75% dry weight, PHB content 82·5 g/litre, PHB yield YP/S = 0·24 g/g and process productivity 2·29 g/litre·h.  相似文献   

17.
The natural vitamin E analog α-tocopheryl phosphate (αTP) modulates atherosclerotic and inflammatory events more efficiently than the unphosphorylated α-tocopherol (αT). To investigate the molecular mechanisms involved, we have measured plasma levels of αTP and compared the cellular effects of αT and αTP in THP-1 monocytes. THP-1 cell proliferation is slightly increased by αT, whereas it is inhibited by αTP. CD36 surface expression is inhibited by αTP within hours without requiring transport of αTP into cells, suggesting that αTP may bind to CD36 and/or trigger its internalization. As assessed by gene expression microarrays, more genes are regulated by αTP than by αT. Among a set of confirmed genes, the expression of vascular endothelial growth factor is induced by αTP as a result of activating protein kinase B (PKB/Akt) and is associated with increased levels of reactive oxygen species (ROS). Increased Akt(Ser473) phosphorylation and induction of ROS by αTP occur in a wortmannin-sensitive manner, indicating the involvement of phosphatidylinositol kinases. The induction of Akt(Ser473) phosphorylation and ROS production by αTP can be attenuated by αT. It is concluded that αTP and αT influence cell proliferation, ROS production, and Akt(Ser473) phosphorylation in an antagonistic manner, most probably by modulating phosphatidylinositol kinases.  相似文献   

18.
α-Tocopherol (α-TOH), a dietary component of vitamin E, is well known for its antioxidant capacity. Nevertheless, recent studies have pointed out non-anti-radical properties including cellular and genomic actions. Decreased levels of α-tocopherol in the brain are associated with neuronal dysfunctions ranging from mood disorders to neurodegeneration. All these behavioral effects of α-tocopherol deficiency probably do not rely simply on its anti-radical properties, but could also be reminiscent of a not-yet characterized neuromodulatory action. We have thus measured the direct actions of α-tocopherol and of its natural phosphate derivative, α-tocopheryl phosphate (α-TP), on synaptic transmission in rodent hippocampus. These compounds had opposite actions on both glutamatergic and GABAergic transmission: whereas α-TOH potentiated these transmissions, α-TP inhibited them. Interestingly, these effects were both mediated by cannabinoid receptors (CB1Rs), because they were blocked by the CB1R antagonist AM251. Although α-tocopherol and α-tocopheryl phosphate did not directly bind CB1R, both α-TP and CB1R agonists inhibited forskolin-evoked Erk1/2 phosphorylation in a nonadditive manner. Furthermore, both α-tocopherol and α-tocopheryl phosphate attenuated depolarization-induced suppression of excitation and CB1R agonist-mediated hypothermia. Therefore, we identify α-tocopherol as new lipid modulator of the cannabinoid system in the rodent hippocampus, i.e., a novel “non-anti-radical” action of vitamin E, which may have some preeminent impact in neuronal disorders associated with vitamin E deficiency.  相似文献   

19.
An engineered Escherichia coli strain was developed for enhanced isoprene production using d-galactose as substrate. Isoprene is a valuable compound that can be biosynthetically produced from pyruvate and glyceraldehyde-3-phosphate (G3P) through the methylerythritol phosphate pathway (MEP). The Leloir and De Ley–Doudoroff (DD) pathways are known existing routes in E. coli that can supply the MEP precursors from d-galactose. The DD pathway was selected as it is capable of supplying equimolar amounts of pyruvate and G3P simultaneously. To exclusively direct d-galactose toward the DD pathway, an E. coli ΔgalK strain with blocked Leloir pathway was used as the host. To obtain a fully functional DD pathway, a dehydrogenase encoding gene (gld) was recruited from Pseudomonas syringae to catalyze d-galactose conversion to d-galactonate. Overexpressions of endogenous genes known as MEP bottlenecks, and a heterologous gene, were conducted to enhance and enable isoprene production, respectively. Growth test confirmed a functional DD pathway concomitant with equimolar generation of pyruvate and G3P, in contrast to the wild-type strain where G3P was limiting. Finally, the engineered strain with combined DD–MEP pathway exhibited the highest isoprene production. This suggests that the equimolar pyruvate and G3P pools resulted in a more efficient carbon flux toward isoprene production. This strategy provides a new platform for developing improved isoprenoid producing strains through the combined DD–MEP pathway.  相似文献   

20.
To explore the role of digalactosyldiacylglycerol (DGDG) in plants the dgd1 mutant of Arabidopsis thaliana was grown in the presence and absence of inorganic phosphate. Phosphate deficiency in the dgd1 mutant causes a strong decrease in all phospholipids accompanied by an increase in DGDG and sulpholipid. Moreover, a significant DGDG accumulation was found in roots upon phosphate deprivation as well. Our data indicate that DGDG accumulation upon phosphate deprivation is due to the activation of a specific eukaryotic dgd1-independent biosynthetic pathway. We propose that DGDG may substitute for phosphatidylcholine upon phosphate deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号