首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cholinergic stimulation of chloride secretion involves the activation of a basolateral membrane potassium conductance, which maintains the electrical gradient favoring apical Cl efflux and allows K to recycle at the basolateral membrane. We have used transepithelial short-circuit current (I SC), fluorescence imaging, and patch clamp studies to identify and characterize the K channel that mediates this response in T84 cells. Carbachol had little effect on I SC when added alone but produced large, transient currents if added to monolayers prestimulated with cAMP. cAMP also enhanced the subsequent I SC response to calcium ionophores. Carbachol (100 m) transiently elevated intracellular free calcium ([Ca2+] i ) by 3-fold in confluent cells cultured on glass coverslips with a time course resembling the I sc response of confluent monolayers that had been grown on porous supports. In parallel patch clamp experiments, carbachol activated an inwardly rectifying potassium channel on the basolateral aspect of polarized monolayers which had been dissected from porous culture supports. The same channel was transiently activated on the surface of subconfluent monolayers during stimulation by carbachol. Activation was more prolonged when cells were exposed to calcium ionophores. The conductance of the inward rectifier in cell-attached patches was 55 pS near the resting membrane potential (–54 mV) with pipette solution containing 150 mm KCl (37°C). This rectification persisted when patches were bathed in symmetrical 150 mm KCl solutions. The selectivity sequence was 1 K > 0.88 Rb > 0.18 Na Cs based on permeability ratios under bi-ionic conditions. The channel exhibited fast block by external sodium ions, was weakly inhibited by external TEA, was relatively insensitive to charybdotoxin, kaliotoxin, 4-aminopyridine and quinidine, and was unaffected by external 10 mm barium. It is referred to as the KBIC channel based on its most distinctive properties (Ba-insensitive, inwardly rectifying, Ca-activated). Like single KBIC channels, the carbachol-stimulated I SC was relatively insensitive to several blockers on the basolateral side and was unaffected by barium. These comparisons between the properties of the macroscopic current and single channels suggest that the KBIC channel mediates basolateral membrane K conductance in T84 cell monolayers during stimulation by cholinergic secretagogues.We thank Dr. Marcel Crest (Laboratoire de Neurobiologie, CNRS, Marseille) for providing a sample of kaliotoxin. This work was supported by the Canadian Cystic Fibrosis Foundation and the Respiratory Health Network of Centres of Excellence. J.W.H. is a Chercheur-Boursier of the Fonds de la recherche en santé du Québec.  相似文献   

2.
K+ channels in the renal proximal tubule play an important role in salt reabsorption. Cells of the frog proximal tubule demonstrate an inwardly rectifying, ATP-sensitive K+ conductance that is inhibited by Ba2+, GBa. In this paper we have investigated the importance of phosphorylation state on the activity of GBa in whole-cell patches. In the absence of ATP, GBa decreased over time; this fall in GBa involved phosphorylation, as rundown was inhibited by alkaline phosphatase and was accelerated by the phosphatase inhibitor F(10 mM). Activation of PKC using the phorbol ester PMA accelerated rundown via a mechanism that was dependent on phosphorylation. In contrast, the inactive phorbol ester PDC slowed rundown. Inclusion of the PKC inhibitor PKC-ps in the pipette inhibited rundown. These data indicate that PKC-mediated phosphorylation promotes channel rundown. Rundown was prevented by the inclusion of PIP-2 in the pipette. PIP-2 also abrogated the PMA-mediated increase in rundown, suggesting that regulation of GBa by PIP-2 occurred downstream of PKC-mediated phosphorylation. G-protein activation inhibited GBa, with initial currents markedly reduced in the presence of GTPγs. These properties are consistent with GBa being a member of the ATP-sensitive K+ channel family.  相似文献   

3.
Previous studies in our laboratory have shown that Na absorption across the porcine endometrium is stimulated by PGF and cAMP-dependent activation of a barium-sensitive K channel located in the basolateral membrane of surface epithelial cells. In this study, we identify and characterize this basolateral, barium-sensitive K conductance. Porcine uterine tissues were mounted in Ussing chambers and bathed with KMeSO4 Ringer solution. Amphotericin B (70 μm) was added to the luminal solution to permeabilize the apical membrane and determine the current-voltage relationship of the basolateral K conductance after activation by 100 μm CPT-cAMP. An inwardly rectifying current was identified which possessed a reversal potential of −53 mV when standard Ringer solution was used to bathe the serosal surface. The K:Na selectivity ratio was calculated to be 12:1. Administration of 5 mm barium to the serosal solution completely inhibited the current activated by cAMP under these conditions. In addition to these experiments, amphotericin-perforated whole cell patch clamp recordings were obtained from primary cultures of porcine surface endometrial cells. The isolated cells displayed an inwardly rectifying current under basal conditions. This current was significantly stimulated by CPT-cAMP and blocked by barium. These results together with our previous studies demonstrate that cAMP increases Na absorption in porcine endometrial epithelial cells by activating an inwardly rectifying K channel present in the basolateral membrane. Similar patch clamp experiments were conducted using cells from a human endometrial epithelial cell line, RL95-2. An inwardly rectifying current was also identified in these cells which possessed a reversal potential of −56 mV when the cells were bathed in standard Ringer solution. This current was blocked by barium as well as cesium. However, the current from the human cells did not appear to be activated by cAMP, indicating that distinct subtypes of inwardly rectifying K channels are present in endometrial epithelial cells from different species. Received: 6 February 1997/Revised: 10 July 1997  相似文献   

4.
To study K+ channels in the basolateral membrane of chloride-secreting epithelia, rat tracheal epithelial monolayers were cultured on permeable filters and mounted into an Ussing chamber system. The mucosal membrane was permeabilized with nystatin (180 μg/ml) in the symmetrical high K+ (145 mm) Ringer solution. During measurement of the macroscopic K+ conductance properties of the basolateral membrane under a transepithelial voltage clamp, we detected at least two types of K+ currents: one is an inwardly rectifying K+ current and the other is a slowly activating outwardly rectifying K+ current. The inwardly rectifying K+ current is inhibited by Ba2+. The slowly activating K+ current was potentiated by cAMP and inhibited by clofilium, phorbol 12-myristae 13-acetate (PMA) and lowering temperature. This is consistent with the biophysical characteristics of I SK channel. RT-PCR analysis revealed the presence of I SK cDNA in the rat trachea epithelia. Although 0.1 mm Ba2+ only had minimal affect on short-circuit current (I sc) induced by cAMP in intact epithelia, 0.1 mm clofilium strongly inhibited it. These results indicate that I SK might be important for maintaining cAMP-induced chloride secretion in the rat trachea epithelia. Received: 1 March 1996/Revised: 5 August 1996  相似文献   

5.
The response of confluent monolayers of HT29-Cl.16E cells to stimulation by extracellular ATP and ATP analogues was investigated in terms of mucin and electrolyte secretion. Mucin secretion was measured as release of glucosamine-labeled macromolecules trapped at the stacking/running gel interface of polyacrylamide gels and electrolyte secretion as shortcircuit current (Isc). Luminal ATP stimulated a transient increase in the release of mucins and of I sc corresponding to a secretory Cl current. Both secretions peaked at 3 to 5 min after addition of ATP. Maximal ATP-stimulated mucin secretion over 15 min was up to 18-fold above control with an apparent ED50 of approximately 40 m. Maximal peak I sc after stimulation with ATP was approximately 35 A/cm2 with an apparent ED50 of about 0.4 mm. ATP-dependent I sc was at least in part due to Cl secretion since removal of Cl from the medium reduced the peak I sc by 40% and the I sc integrated over 40 min by 80%. The secretory responses were not associated with cell damage as assessed by failure of ethidium bromide to enter into the cells, absence of release of lactate dehydrogenase, maintenance of monolayer conductance, viability, and responses to repeated applications of ATP. The order of efficacy of nucleotide agonists was similar for both processes with ATP>ADP>AMPadenosine. Luminal ATP was much more effective than basolateral addition of this compound. These results suggest involvement of a luminal P2-type receptor which can initiate signaling pathways for granule fusion and mucin release as well as for activation of Cl channels. P2-receptor-stimulated mucin and I sc release was strongly inhibited by a 30 min preincubation with the classical K+ channel blockers quinine (1 mm), quinidine (1 mm), and Ba2+ (3 mm). Experiments with amphotericin B to measure separately the conductance changes of either luminal or basolateral plasma membrane revealed that quinidine did not directly block the ATP-induced basolateral K+ or the luminal anion channels. The quinidine inhibition after preincubation is therefore most easily explained by interference with granule fusion and location of anion channels in granule membranes. Luminal P2 receptors may play a role in intestinal defense mechanisms with both fluid and mucin secretion aiding in the removal of noxious agents from the mucosal surface.Supported by grants from the National Institutes of Health (DK 39658) to U.H., the Philippe Foundation to D.M., the French Cystic Fibrosis Foundation (AFLM) and L'Association Pour La Recherche Sur Le Cancer to C.L. The authors thank Mr. J. Polack for his efforts and skill with electron microscopy and Dr. George Dubyak for helpful discussions. We also acknowledge the Cystic Fibrosis Center Core grant (DK-27651) for its support of electron and light microscopy.  相似文献   

6.
In hippocampal neurons, 5-hydroxytryptamine (5-HT) activates an inwardly rectifying K+ current via G protein. We identified the K+ channel activated by 5-HT (K5-HT channel) and studied the effects of G protein subunits and nucleotides on the K+ channel kinetics in adult rat hippocampal neurons. In inside-out patches with 10 m 5-HT in the pipette, application of GTP (100 m) to the cytoplasmic side of the membrane activated an inwardly rectifying K+ channel with a slope conductance of 36±1 pS (symmetrical 140 mm K+) at –60 mV and a mean open time of 1.1±0.1 msec (n=5). Transducin activated the (K5-HT) channels and this was reversed by -GDP. Whether the K5-HT channel was activated endogenously (GTP, GTPS) or exogenously (), the presence of 1 mm ATP resulted in a 4-fold increase in channel activity due in large part to the prolongation of the open time duration. These effects of ATP were irreversible and not mimicked by AMPPMP, suggesting that phosphorylation might be involved. However, inhibitors of protein kinases A and C (H-7, staurosporine) and tyrosine kinase (tyrphostin 25) failed to block the effect of ATP. These results show that G activates the G protein-gated K+ channel in hippocampal neurons, and that ATP modifies the gating kinetics of the channel, resulting in increased open probability via as yet unknown pathways.  相似文献   

7.
Dissociated single fibers from the mouse flexor digitorum brevis (FDB) muscle were used in patch clamp experiments to investigate the mechanisms of activation and inactivation of KATP in mammalian skeletal muscle. Spontaneous rundown of channel activity, in many excised patches, occurred gradually over a period of 10–20 min. Application of 1.0 mm free-Ca2+ to the cytoplasmic side of the patch caused irreversible inactivation of KATP within 15 sec. Ca2+-induced rundown was not prevented by the presence of 1.0 m okadaic acid or 2.0 mg ml of an inhibitor of calcium-activated neutral proteases, a result consistent with the conclusion that phosphatases or calcium-activated neutral proteases were not involved in the rundown process. Application of 1.0 mm Mg.ATP to Ca2+inactivated KATP caused inhibition of residual activity but little or no reactivation of the channels upon washout of ATP, even in the presence of the catalytic subunit of cyclic AMP-dependent protein kinase (10 U ml–1). Mg.ATP also failed to reactivate KATP, even after only partial spontaneous rundown, despite the presence of channels that could be activated by the potassium channel opener BRL 38227. Nucleotide diphosphates (500 m; CDP, UDP, GDP and IDP) caused immediate and reversible opening of Ca2+-inactivated KATP. Reactivation of KATP by ADP (100 m) increased further upon removal of the nucleotide. In contrast to KATP from cardiac and pancreatic cells, there was no evidence for phosphorylation of KATP from the surface sarcolemma of dissociated single fibers from mouse skeletal muscle. The small degree of activation occasionally observed following application of 10 m or 1.0 mm Mg.ATP could have been due to the generation of ADP from ATP hydrolysis and not through phosphorylation. Data are consistent with the suggestion that Ca2+ inactivation of KATP involves a gating mechanism that can be reopened by nucleotide diphosphates.M.H. is supported by the Medical Research Council.  相似文献   

8.
The effects of several group-specific chemical reagents were examined upon the activity of the ATP-sensitive potassium (KATP) channel in the CRI-G1 insulin-secreting cell line. Agents which interact with the sulfhydryl moiety (including 1 mM N-ethylmaleimide (NEM), 1 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DNTB) and 1 mm o-iodobenzoate) produced an irreversible inhibition of KATP channel activity when applied to the intracellular surface of excised inside-out patches. This inhibition was substantially reduced when attempts were made to eliminate Mg2+ from the intracellular compartment. ATP 50 m and 100 m tolbutamide were each shown to protect against the effects of these reagents. The membrane impermeable DNTB was significantly less effective when applied to the external surface of outside-out patches. Agents which interact with peptide terminal amine groups and amino groups of lysine [1 mm methyl acetimidate and 1 mm trinitrobenzene sulfonic acid (TNBS)] and also the guanido group of arginine (1 mm methyl glyoxal) produced a Mg2+-dependent irreversible inhibition of KATP channel activity which could be prevented by ATP but not tolbutamide. The irreversible activation of the KATP channel produced by the proteolytic enzyme trypsin was prevented only when methyl glyoxal and methyl acetimidate were used in combination to inhibit channel activity. Radioligand binding studies showed that the binding of 3H glibenclamide was unaffected by any of the above agents with the exception of TNBS which completely inhibited binding with a EC50 of 307 ±6 m.These results provide evidence for the presence of essential sulfhydryl (possibly cysteine), and basic amino acid (possibly lysine and arginine) residues associated with the normal functioning of the KATP channel. Furthermore, we believe that the sulfhydryl group in question is situated at the internal surface of the membrane, possibly near to the channel pore.K.L. is a Wellcome Prize Student. This work was supported by the Wellcome Trust, MRC and BDA.  相似文献   

9.
Single channel currents were activated by GABA (0.5 to 5 m) in cell-attached and inside-out patches from cells in the dentate gyrus of rat hippocampal slices. The currents reversed at the chloride equilibrium potential and were blocked by bicuculline (100 m). Several different kinds of channel were seen: high conductance and low conductance, rectifying and nonrectifying. Channels had multiple conductance states. The open probability (P o ) of channels was greater at depolarized than at hyperpolarized potentials and the relationship between P o and potential could be fitted with a Boltzmann equation with equivalent valency (z) of 1. The combination of outward rectification and potentialdependent open probability gave very little chloride current at hyperpolarized potentials but steeply increasing current with depolarization, useful properties for a tonic inhibitory mechanism.  相似文献   

10.
Patch clamp experiments were performed on two human osteosarcoma cell lines (MG-63 and SaOS-2 cells) that show an osteoblasticlike phenotype to identify and characterize the specific K channels present in these cells. In case of MG-63 cells, in the cell-attached patch configuration (CAP) no channel activity was observed in 2 mm Ca Ringer (control condition) at resting potential. In contrast, a maxi-K channel was observed in previously silent CAP upon addition of 50 nm parathyroid hormone (PTH), 5 nm prostaglandin E2 (PGE2) or 0.1 mm dibutyryl cAMP + 1 μm forskolin to the bath solution. However, maxi-K channels were present in excised patches from both stimulated and nonstimulated cells in 50% of total patches tested. A similar K channel was also observed in SaOS-2 cells. Characterization of this maxi-K channel showed that in symmetrical solutions (140 mm K) the channel has a conductance of 246 ± 4.5 pS (n = 7 patches) and, when Na was added to the bath solution, the permeability ratio (PK/PNa) was 10 and 11 for MG-63 and SaOS-2 cells respectively. In excised patches from MG-63 cells, the channel open probability (P o ) is both voltage- (channel opening with depolarization) and Ca-dependent; the presence of Ca shifts the P o vs. voltage curve toward negative membrane potential. Direct modulation of this maxi-K channel via protein kinase A (PKA) is very unlikely since in excised patches the activity of this channel is not sensitive to the addition of 1 mm ATP + 20 U/ml catalytic subunit of PKA. We next evaluated the possibility that PGE2 or PTH stimulated the channel through a rise in intracellular calcium. First, calcium uptake (45Ca++) by MG-63 cells was stimulated in the presence of PTH and PGE2, an effect inhibited by Nitrendipine (10 μm). Second, whereas PGE2 stimulated the calcium-activated maxi-K channel in 2 mm Ca Ringer in 60% of patches studied, in Ca-free Ringer bath solution, PGE2 did not open any channels (n = 10 patches) nor did cAMP + forskolin (n = 3 patches), although K channels were present under the patch upon excision. In addition, in the presence of 2 mm Ca Ringer and 10 μm Nitrendipine in CAP configuration, PGE2 (n = 5 patches) and cAMP + forskolin (n = 2 patches) failed to open K channels present under the patch. As channel activation by phosphorylation with the catalytic subunit of PKA was not observed, and Nitrendipine addition to the bath or the absence of calcium prevented the opening of this channel, it is concluded that activation of this channel by PTH, PGE2 or dibutyryl cAMP + forskolin is due to an increase in intracellular calcium concentration via Ca influx. Received: 17 September 1995/Revised: 7 December 1995  相似文献   

11.
The gating cycle of CFTR (Cystic Fibrosis Transmembrane conductance Regulator) chloride channels requires ATP hydrolysis and can be interrupted by exposure to the nonhydrolyzable nucleotide AMP-PNP. To further characterize nucleotide interactions and channel gating, we have studied the effects of AMP-PNP, protein kinase C (PKC) phosphorylation, and temperature on gating kinetics. The rate of channel locking increased from 1.05 × 10−3 sec−1 to 58.7 × 10−3 sec−1 when AMP-PNP concentration was raised from 0.5 to 5 mm in the presence of 1 mm MgATP and 180 nm protein kinase A catalytic subunit (PKA). Although rapid locking precluded estimation of P o or opening rate immediately after the addition of AMP-PNP to wild-type channels, analysis of locking rates in the presence of high AMP-PNP concentrations revealed two components. The appearance of a distinct, slow component at high [AMP-PNP] is evidence for AMP-PNP interactions at a second site, where competition with ATP would reduce P o and thereby delay locking. All channels exhibited locking when they were strongly phosphorylated by PKA, but not when exposed to PKC alone. AMP-PNP increased P o at temperatures above 30°C but did not cause locking, evidence that the stabilizing interactions between domains, which have been proposed to maintain CFTR in the open burst state, are relatively weak. The temperature dependence of normal CFTR gating by ATP was strongly asymmetric, with the opening rate being much more temperature sensitive (Q 10= 9.6) than the closing rate (Q 10= 3.6). These results are consistent with a cyclic model for gating of phosphorylated CFTR. Received: 28 August 1997/Revised: 4 February 1998  相似文献   

12.
Cultured mouse MTAL cells contain more mRNA encoding the Cl channel mcClC-Ka, which mediates CTAL Cl absorption, than mRNA encoding the Cl channel mmClC-Ka, which mediates MTAL Cl absorption. mmClC-Ka and mcClC-Ka have three functional differences: 1) mmClC-Ka open time probability, P o, increases with increasing cytosolic Cl, but variations in cytosolic Cl do not affect P o in mcClC-Ka; 2) mmClC-Ka is gated by (ATP + PKA), while (ATP + PKA) have no effect on P o in mcClC-Ka; and 3) mmClC-Ka channels have single-ion occupancy, while mcClC-Ka channels have multi-ion occupancy. Using basolateral vesicles from MTAL cells fused into bilayers, we evaluated the effects of 1 mM cytosolic phenylglyoxal (PGO), which binds covalently to lysine or arginine, on Cl channels. With PGO pretreatment, Cl channels were uniformly not gated either with increases in cytosolic-face Cl or with (ATP + PKA) at 2 mm cytosolic-face Cl; and they exhibited multi-ion occupancy kinetics typical for mcClC-Ka channels. Thus, in basolateral MTAL membranes, blockade of Cl access to arginine or lysine residues on mmClC-Ka by PGO results in Cl channels having the functional characteristics of mcClC-Ka channels.  相似文献   

13.
Summary Ionic conductances of rabbit osteoclasts were investigated using both whole-cell and cell-attached configurations of the patch-clamp recording technique. The predominant conductance found in these cells was an inwardly rectifying K+ conductance. Whole-cell currents showed an N-shaped current-voltage (I–13;V) relation with inward current activated at potentials negative to EK. When external K+ was varied, I-V curves shifted 53 mV/10-fold change in [K+]out, as predicted for a K+-selective channel. Inward current was blocked by Ba2+ and showed a time-dependent decline at negative potentials, which was reduced in Na+-free external solution. Inward single-channel currents were recorded in the cell-attached configuration. Single-channel currents were identified as inward-rectifier K+ channels based on the following observations: (i) Unitary I-V relations rectified, with only inward current resolved. (ii) Unitary conductance () was 31 pS when recorded in the cell-attached configuration with 140 mm K+ in the pipette and was found to be dependent on [K+]. (iii) Addition of Ba2+ to the pipette solution abolished single-channel events. We conclude that rabbit osteoclasts possess inwardly rectifying K+ channels which give rise to the inward current recorded at negative potentials in the whole-cell configuration. This inwardly rectifying K+ current may be responsible for setting the resting membrane potential and for dissipating electrical potential differences which arise from electrogenic transport of protons across the osteoclast ruffled border.This work was supported by The Arthritis Society and the Medical Research Council of Canada. M.E.M.K. was supported by a fellowship, S.J.D. a development Grant and S.M.S. a scholarship from the Medical Research Council. We thank Dr. Zu Gang Zheng for help with scanning microscopy.  相似文献   

14.
Summary K currents and K-current fluctuations were recorded in inwardly rectifying K channels of frog skeletal muscle under voltage-clamp conditions. External application of 0.2 to 10mm Cs reduces the inward mean K current but produces a distinct increase of the spectral density of K-current fluctuations. The additional fluctuations arise from the random blocking by Cs ions. From the variance of current fluctuations, the steady-state current and the probability of the open unblocked channel an effective single-channel conductance * was calculated. * strongly depends on the external Cs concentration (7.8 pS at 0.2mm Cs, 2.1 pS at 10mm Cs). This dependence is interpreted in terms of a two-step blocking process: (1) a fast exchange of Cs ions between the external solution and a first binding site inside the channel which leads to the Cs-modulated effective single-channel conductance, and (2) a slow Cs binding to a second site deeper in the channel which produces the observed current fluctuations. With this hypothesis we obtained a real single-channel conductance of 10 pS and a real density ofn4 inwardly rectifying channels per m2 of muscle surface area.  相似文献   

15.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

16.
K+ channels sensitive to intracellular ATP (KATP channels) have been described in a number of cell types and are selectively inhibited by sulfonylurea drugs. To look for the presence of this type of K+ channel in the basolateral membrane of tight epithelia, we have used an amphibian renal cell line, the A6 cells, grown on filters. After the selective permeabilization of the apical membrane with amphotericin B, the basolateral conductance was studied under voltage-clamp conditions. Tolbutamide inhibited 65.8 ± 6.3% of the barium-sensitive current. The tolbutamide-sensitive conductance had an equilibrium potential of ?83 ± 1 mV and was inward rectifying in spite of the outwardly directed K+ gradient. Similar results were obtained with glibenclamide. The half-inhibition constants were 25.7 ± 3.0 μm and 0.114 ± 0.018 μm for tolbutamide and glibenclamide respectively. To study the relation between cellular ATP and the activity of this conductance, A6 cells were treated with glucose (5 mm) and insulin (250 μU/ml). This maneuver significantly increased the cellular ATP and abolished the tolbutamide-sensitive conductance. A sulfonylurea-sensitive K+ conductance is present and active in the basolateral membrane of A6 cells. This conductance appears to be modulated by physiological changes of intracellular ATP.  相似文献   

17.
Summary The properties of an anion-selective channel observed in basolateral membranes of microdissected, collagenase-treated, cortical thick ascending limbs of Henle's loop from mouse kidney were investigated using patch-clamp single-channel recording techniques. In basal conditions, single Cl currents were detected in 8% of cell-attached and excised, inside-out, membrane patches whereas they were observed in 24% of cell-attached and 67% of inside-out membrane patches when tubular fragments were preincubated with Forskolin (10–5 m) or 8-bromo-cAMP (10–4 m) and isobutylmethylxanthine (10–5 m). The channel exhibited a linear current-voltage relationship with conductances of about 40 pS in both cell-attached and cell-free membrane configurations. AP Na + P Cl ratio of 0.05 was estimated in the presence of a 142/42mm NaCl concentration gradient applied to inside-out membrane patches. Anionic selectivity of the channel followed the sequence Cl>Br>No 3 F; gluconate was not a permeant species. The open-state probability of the channel increased with membrane depolarization in cell-attached, i.e.,in situ membrane patches. In excised, inside-out, membrane patches, the channel was predominantly open with the open-state probability close to 0.8 over the whole range of potentials tested (–60 to +60 mV). The channel activity was not a function of internal calcium concentration between 10–9 and 10–3 m. We suggest that this Cl channel, whose properties are distinct from those in other epithelia, could account for the well-documented conductance which mediates Cl exit in the basolateral step of NaCl absorption in thick ascending limb of Henle's loop.  相似文献   

18.
The G-protein-mediated coupling of a glucagon receptor to ATP-dependent K channels—KATP—has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches, KATP channel activity was inhibited by low concentrations of glucagon (IC50 = 2.4 nm); the inhibitory effect vanished at concentrations greater than 50 nm. In cell-attached patches, inhibition by bath-applied glucagon was seen most often, although stimulation was observed in a few cases. A dual action of the hormone is proposed to resolve these apparently divergent results. In excised inside-out patches, KATP channel activity was inhibited by addition of subunits purified from either erythrocyte or retina (IC50 = 50 pm and 1 nm, respectively). Subsequent exposure of the patch to i or o reversed this effect. In excised inside-out patches, increasing Mg2+ in the bath stimulated the channel activity between 0 and 0.5 mm, but blocked it at higher concentrations (IC50 = 2.55 mm). In most cases (70%), GTP had a stimulatory effect at concentrations up to 100 m. However, in three cases, similar GTP levels had clear inhibitory effects. In excised inside-out patches, cholera toxin (CTX) caused channel inhibition. Although the effect could not be reversed by removal of the toxin, the activity was restored by subsequent addition of purified i or o . These results are compatible with a model whereby channel inhibition by activated G S -coupled receptors occurs, at least in part, via association of the subunits of G S with i / o subunits and deactivation of the i / o -dependent stimulatory pathway. On the basis of this hypothesis, a model is developed to describe the effects of G proteins on the KATP channel, as well as to account for the concentration-dependent stimulation and inhibition of KATP channel by Mg2+. An interpretation of the ability of glucagon to potentiate, but not initiate, insulin release is also given in terms of this model and the effects of ATP on KATP channels.This work was supported by grant DCB-89 19368 from the National Science Foundation and a research grant (W-P 880513) from the American Diabetes Association to B.R.The authors would like to thank Dr. A.E. Boyd, III for supplying the RINm5F and HIT cells, Drs. J. Codina and L. Birnbaumer for supplying the G protein and subunits from erythrocyte, Dr. R.A. Cerione for supplying the G protein subunit from retina, and Mrs. Satoko Hagiwara for preparing and maintaining the cell cultures.  相似文献   

19.
Summary The effects of tetraethylammonium (TEA) and quinine on Ca-activated [K(Ca)]. ATP-sensitive [K(ATP)]K channels and delayed-rectifier K current [K(dr)] have been studied in cultured insulin-secreting HIT cells using the patch-clamp technique. K(Ca) and K(ATP) channels were identified in excised, outside/ out patches using physiological solutions and had unitary conductances of 60.8±1.3 pS (n=31) and 15.4±0.3 pS (n=40). respectively. Macroscopic K(dr) current (peak current=607±100 pA at +50 mV,n=14) were recorded in the presence of 100 m cadmium and 0.5 m tetrodotoxin. Tetraethylammonium (TEA) blocked all three channel types but was more effective on K(Ca) channels (EC50=0.15mm) than on K(ATP) channels (EC50=15mm) or K(dr) currents (EC50=3mm). Quinine also blocked all three currents but was less effective on K(Ca) channels (EC50=0.3mm) while equally effective against K(ATP) channels and K(dr) currents (EC50=0.025mm). TEA blocked K(Ca) and K(ATP)_channels by reducing their single-channel conductances and decreasing the probability of K(ATP) channel opening. Quinine blocked K(Ca) channels by reducing the single-channel conductance, but blocked K(ATP) channels by reducing the probability of channel opening. Reinterpretation of previous microelectrode studies in light of these findings suggest that, (i) only K(ATP) channels are active in low glucose, (ii) both K(Ca) and K(dr) channels may assist Ca-spike repolarization, and (iii) K(Ca) channels play no role in forming the burst pattern of Ca spiking in the B cell.  相似文献   

20.
The properties of one ATP-inhibited and one Ca2+-dependent K+ channel were investigated by the patch-clamp technique in the soma membrane of leech Retzius neurons in primary culture. Both channels rectify at negative potentials. The ATP-inhibited K+ channel with a mean conductance of 112 pS is reversibly blocked by ATP (K i = 100 m), TEA (K i =0.8 mm) and 10 mm Ba2+ and irreversibly blocked by 10 nm glibenclamide and 10 m tolbutamide. It is Ca2+ and voltage independent. Its open state probability (P o) decreases significantly when the pH at the cytoplasmic face of inside-out patches is altered from physiological to acid pH values. The Ca2+-dependent K+ channel with a mean conductance of 114 pS shows a bell-shaped Ca2+ dependence of P o with a maximum at pCa 7–8 at the cytoplasmic face of the membrane. The P o is voltage independent at the physiologically relevant V range. Ba2+ (10 mm) reduces the single channel amplitude by around 25% (ATP, TEA, glibenclamide, tolbutamide, and Ba2+ were applied to the cytoplasmic face of the membrane).We conclude that the ATP-dependent K+ channel may play a role in maintaining the membrane potential constant—independently from the energy state of the cell. The Ca2+-dependent K+ channel may play a role in generating the resting membrane potential of leech Retzius neurons as it shows maximum activity at the physiological intracellular Ca2+ concentration.This study was supported by the Deutsche Forschungsgemeinschaft (W.-R. Schlue) and by a fellowship of the Konrad-Adenauer-Stiftung (G. Frey). We thank Dr. Draeger (Hoechst AG) for the gift of glibenclamide. The data are part of a future Ph.D. thesis of G. Frey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号