首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Thompson  E B Ziff 《Neuron》1989,2(1):1043-1053
We have cloned the rat gene encoding peripherin, a neuronal-specific intermediate filament protein that is NGF-regulated. Determination of the complete sequence, including 821 nucleotides of the 5'-flanking region, allows us to make conclusions about the evolutionary origin of the peripherin gene, its homology with other intermediate filament proteins, and possible mechanisms of regulation of peripherin expression in neurons. The positions of the eight peripherin gene introns correspond to the intron patterns of desmin, vimentin, and GFAP, with one example of intron sliding. Together with protein sequence homologies, this conclusively demonstrates that peripherin is a type III intermediate filament protein. The peripherin promoter contains sequences homologous to regions of other NGF-regulated promoters, which may function in peripherin induction by NGF.  相似文献   

2.
3.
Abstract: In contrast to the intensively studied nerve growth factor (NGF)-related family of cytokines, relatively little is known about the mechanisms of neurotrophic activity elicited by the cytokine interleukin-6 (IL-6). We have examined the mechanisms of IL-6-induced neuronal differentiation of the pheochromocytoma cell line PC12. IL-6 independently induced the expression of peripherin , identifying this gene as the first neuronal-specific target of IL-6. However, IL-6 alone failed to elicit neurite outgrowth in PC12 cells and instead required low levels of Trk/NGF receptor tyrosine kinase activity to induce neuronal differentiation. The cooperating Trk signal could be provided by either overexpression of Trk or exposure to low concentrations of NGF. IL-6 also functioned cooperatively with basic fibroblast growth factor to promote PC12 differentiation. IL-6 and Trk/NGF synergized in enhancing tyrosine phosphorylation of the Erk-1 mitogen-activated protein kinase and in activating expression of certain NGF target genes. NGF also induced expression of the gp80 subunit of the IL-6 receptor, providing another potential mechanism of cooperativity between NGF and IL-6 signaling. We propose that IL-6 functions as an enhancer of NGF signaling rather than as an autonomous neuronal differentiation signal. Moreover, our results demonstrate that a Trk receptor-specific cellular response can be achieved in the absence of NGF through amplification of its basal signaling activity by the IL-6 receptor system.  相似文献   

4.
PKCα is a key mediator of the neuronal differentiation controlled by NGF and ATP. However, its downstream signaling pathways remain to be elucidated. To identify the signaling partners of PKCα, we analyzed proteins coimmunoprecipitated with this enzyme in PC12 cells differentiated with NGF and ATP and compared them with those obtained with NGF alone or growing media. Mass spectrometry analysis (LC-MS/MS) identified plectin, peripherin, filamin A, fascin, and β-actin as potential interacting proteins. The colocalization of PKCα and its interacting proteins increased when PC12 cells were differentiated with NGF and ATP. Peripherin and plectin organization and the cortical remodeling of β-actin were dramatically affected when PKCα was down-regulated, suggesting that all three proteins might be functional targets of ATP-dependent PKCα signaling. Taken together, these data demonstrate that PKCα is essential for controlling the neuronal development induced by NGF and ATP and interacts with the cytoskeletal components at two levels: assembly of the intermediate filament peripherin and organization of cortical actin.  相似文献   

5.
J Oberdoerster  R A Rabin 《Life sciences》1999,64(23):PL 267-PL 272
The present study was undertaken to determine whether the neurotoxic effects of ethanol vary between undifferentiated and differentiated neurons. For this study, untreated rat pheochromocytoma (PC12) cells and PC12 cells treated for 8-10 days with nerve growth factor (NGF) were used as models of undifferentiated and differentiated neurons, respectively. Treatment of differentiated PC12 cells with 150 mM ethanol resulted in a loss of cells whereas a similar treatment of undifferentiated cells had no effect. In contrast, 50 mM ethanol enhanced apoptosis initiated by serum withdrawal in undifferentiated cells while a similar response in the differentiated cells required 150 mM ethanol. This study demonstrates that undifferentiated and differentiated neuronal cells differ in their sensitivity to the neurotoxic actions of ethanol.  相似文献   

6.
Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells   总被引:3,自引:0,他引:3  
We have investigated the role of the mitochondrial pathway during cell death following serum and nerve growth factor (NGF)/dibutyryl cyclic AMP (Bt(2)cAMP) withdrawal in undifferentiated or NGF/Bt(2)cAMP-differentiated PC12 cells, respectively. Holocytochrome c, Smac/DIABLO, and Omi/HtrA2 are released rapidly following trophic factor deprivation in PC12 cells. Bcl-2 and Akt inhibited this release. The protection, however, persisted longer in differentiated PC12 cells. In differentiated, but not undifferentiated cells, Bcl-2 and Akt also inhibited apoptosis downstream of holocytochrome c release. Thus, undifferentiated PC12 cells showed marked sensitivity to induction of apoptosis by microinjected cytochrome c even in the presence of NGF, Bcl-2, or Akt. In contrast, in differentiated cells these factors suppressed cell death. Consistent with these observations, in vitro processing of procaspase 9 in response to cytochrome c was observed in extracts from undifferentiated but not differentiated cells expressing Akt or Bcl-2. Endogenous caspase 9 was cleaved during cell death, whereas dominant negative caspase 9 inhibited cell death. The results from determining the role of inhibitors of apoptosis (IAPs) suggest that acquisition of inhibition by IAPs is part of the differentiation program. Ubiquitin-DeltaN-AVPI Smac/DIABLO induced cell death in differentiated cells only. c-IAP-2 is unregulated in differentiated cells, whereas X-linked IAP levels decreased in these cells coincident with cell death. Moreover, expressing X-linked IAP rendered undifferentiated cells resistant to microinjected cytochrome c. Overall, the inhibitory regulation, of cell death at the level of release of mitochondrial apoptogenic factors and at post-mitochondrial activation of caspase 9 observed in differentiated PC12 cells, is reduced or absent in the undifferentiated counterparts.  相似文献   

7.
8.
Peripherin, a recently described member of the intermediate filament multigene family, is present in peripheral and certain central nervous system neurons as well as in cultured neuron-like cell lines, including PC12 pheochromocytoma cells. In PC12 cells, peripherin appears to be the major intermediate filament protein and its relative levels and synthesis are specifically increased during nerve growth factor (NGF)-promoted neuronal differentiation. The present study examines the phosphorylation of peripherin and the regulation thereof by nerve growth factor and other agents in cultured PC12 cells. Immunoblotting experiments using a peripherin-specific antiserum show five distinct isoforms of this protein in whole cell and cytoskeletal extracts resolved by two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three of these isoforms incorporate detectable quantities of [32P]phosphate during metabolic radiolabeling. The small proportion (approximately 6%) of total cellular peripherin that is extractable with 1% Triton X-100, does not appear to incorporate phosphate. NGF increases peripherin phosphorylation by 2-3-fold within 1-2 h of treatment. Epidermal growth factor and insulin have no effect. The relative levels of phosphorylated peripherin are markedly elevated (17-fold) by long term NGF exposure, and peripherin becomes a major cytoskeletal phosphoprotein. Activators of protein kinases A and C and treatment with depolarizing levels of K+ also enhance peripherin phosphorylation by 2-3-fold, in cultures both with and without prior long term NGF treatment. Evidence is presented that NGF regulates peripherin phosphorylation by a mechanism independent of protein kinases A and C and of depolarization. The large increase in phosphorylated peripherin brought about by NGF treatment suggests that this neuronal filament protein may play a role in the elaboration and maintenance of neurites. The presence of multiple independent pathways that acutely enhance peripherin phosphorylation indicates that this role is subject to modulation by extrinsic signals.  相似文献   

9.
J Milbrandt 《Neuron》1988,1(3):183-188
  相似文献   

10.
The ternary complex factor Elk-1, a major nuclear target of extracellular signal-regulated kinases, is a strong transactivator of serum-responsive element (SRE) driven gene expression. We report here that mature brain neurons and nerve growth factor (NGF)-differentiated PC12 cells also express a second, smaller isoform of Elk-1, short Elk-1 (sElk-1). sElk-1 arises from an internal translation start site in the Elk-1 sequence, which generates a protein lacking the first 54 amino acids of the DNA-binding domain. This deletion severely compromises the ability of sElk-1 to form complexes with serum response factor on the SRE in vitro and to activate SRE reporter genes in the presence of activated Ras. Instead, sElk, but not a mutant that cannot be phosphorylated, inhibits transactivation driven by Elk-1. More pertinent to the neuronal-specific expression of sElk-1, we show it plays an opposite role to Elk-1 in potentiating NGF-driven PC12 neuronal differentiation. Overexpression of sElk-1 but not Elk-1 increases neurite extension, an effect critically linked to its phosphorylation. Interestingly, in the presence of sElk-1, Elk-1 loses its strictly nuclear localization to resemble the nuclear/cytoplasm pattern observed in the mature brain. This is blocked by mutating a normally cryptic nuclear export signal in Elk-1. These data provide new insights into molecular events underlying neuronal differentiation of PC12 cells mediated by the NGF-ERK signaling cascade.  相似文献   

11.
12.
13.
14.
DNase , which cleaves chromosomal DNA into nucleosomal units (DNA ladder formation), has been suggested to be the critical component of apoptotic machinery. Using rat pheochromocytoma PC12 cells, which are differentiated to sympathetic neurons by nerve growth factor (NGF), we investigated whether DNase -like enzyme is present in neuronal cells and is involved in neuronal cell death. The nuclear auto-digestion assay for DNase catalyzing internucleosomal DNA cleavage revealed that nuclei from neuronal differentiated PC12 cells contain acidic and neutral endonucleases, while nuclei from undifferentiated PC12 cells have only acidic endonuclease. The DNA ladder formation observed in isolated nuclei from neuronal differentiated PC12 cells at neutral pH requires both Ca2+ and Mg2+, and is sensitive to Zn2+. The molecular mass of the neutral endonuclease present in neuronal differentiated PC12 cell nuclei is 32000 as determined by activity gel analysis (zymography). The properties of the neuronal endonuclease present in neuronal differentiated PC12 cell nuclei were similar to those of purified DNase from rat thymocytes and splenocytes. Interestingly, in neuronal differentiated PC12 cells, internucleosomal DNA fragmentation is observed following NGF deprivation, whereas undifferentiated PC12 cells fail to exhibit DNA ladder formation during cell death by serum starvation. These results suggest that the DNase -like endonuclease present in neuronal differentiated PC12 cell nuclei is involved in internucleosomal DNA fragmentation during apoptosis, induced by NGF deprivation.  相似文献   

15.
The herpes simplex virus type 1 (HSV-1) genome contains three origins of DNA replication, one copy of oriL and two copies of oriS. Although oriL and oriS are structurally different, they have extensive nucleotide sequence similarity and can substitute for each other to initiate viral DNA replication. A fundamental question that remains to be answered is why the HSV-1 genome contains two types of origin. We have recently identified a novel glucocorticoid response element (GRE) within oriL that is not present in oriS and have shown by gel mobility shift assays that purified glucocorticoid receptor (GR), as well as GR present in cellular extracts, can bind to the GRE in oriL. To determine whether glucocorticoids and the GRE affect the efficiency of oriL-dependent DNA replication, we performed transient DNA replication assays in the presence and absence of dexamethasone (DEX). Because HSV-1 is a neurotropic virus and establishes latency in cells of neural origin, these tests were conducted in PC12 cells, which assume the properties of sympathetic neurons when differentiated with nerve growth factor (NGF). In NGF-differentiated PC12 cells, oriL-dependent DNA replication was enhanced 5-fold by DEX, whereas in undifferentiated cells, DEX enhanced replication approximately 2-fold. Notably, the enhancement of oriL function by DEX was abolished when the GRE was mutated. NGF-induced differentiation alone had no effect. In contrast to oriL, oriS-dependent DNA replication was reduced approximately 5-fold in NGF-differentiated PC12 cells and an additional 4-fold in differentiated cells treated with DEX. In undifferentiated PC12 cells, DEX had only a minor inhibitory effect (approximately 2-fold) on oriS function. Although the cis-acting elements that mediate the NGF- and DEX-specific repression of oriS-dependent DNA replication are unknown, a functional GRE is critical for the DEX-induced enhancement of oriL function in NGF-differentiated PC12 cells. The enhancement of oriL-dependent DNA replication by DEX in differentiated PC12 cells suggests the possibility that glucocorticoids, agents long recognized to enhance reactivation of latent herpesvirus infections, act through the GRE in oriL to stimulate viral DNA replication and reactivation in terminally differentiated neurons in vivo.  相似文献   

16.
NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3-oxim hydrochloric acid salt) belongs to a new chemical series of compounds. NS-417 rescued differentiated PC12 cells from death induced by withdrawal of serum and nerve growth factor. Furthermore, NS-417 stimulated neurotrophic factor-induced neurite outgrowth in undifferentiated PC12 cells. In accordance with this observation, NS-417 potentiated NGF-induced signaling, such as activation of the extracellular signal-regulated kinases ERK1 and ERK2 and the Akt kinase. NS-417 also enhanced ERK activation induced by 10 minutes stimulation with NGF, bFGF or EGF in PC12 cells. In addition to the effect in PC12 cells, NS-417 increased the number of tyrosine hydroxylase (TH) positive cells in cultures established from dissociated E14 rat ventral mesencephali.  相似文献   

17.
18.
19.
《The Journal of cell biology》1993,123(6):1835-1843
We examined the effect of nerve growth factor (NGF) treatment on expression of a neuronal delayed rectifler K+ channel subtype, Kv2.1 (drk1), in PC12 cells. Anti-Kv2.1 antibodies recognized a single polypeptide population of M(r) = 132 kD in PC12 cell membranes, distinct from the more heterogeneous population found in adult rat brain. In response to NGF treatment, levels of Kv2.1 polypeptide in PC12 membranes increased fourfold. This increase in polypeptide levels could be seen within 12 h, and elevated levels were maintained for at least 6 d of continuous NGF treatment. RNase protection assays indicate that this increase in Kv2.1 protein occurs without an increase in steady state levels of Kv2.1 mRNA following NGF treatment. Immunofluorescent localization of the Kv2.1 polypeptide revealed plasma membrane-associated staining of cell bodies in both untreated and NGF- treated PC12 cells. In undifferentiated cells, intense staining is seen at sites of cell-cell and cell-substratum contact. In differentiated cells the most intense Kv2.1 staining is observed in neuritic growth cones. These studies show that in PC12 cells both the abundance and distribution of the Kv2.1 k+ channel are regulated by NGF, and suggest that PC12 cells provide a model for the selective expression of Kv2.1 in neuritic endings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号