首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ralat LA  Colman RF 《Biochemistry》2006,45(41):12491-12499
Alpha-tocopherol, the most abundant form of vitamin E present in humans, is a noncompetitive inhibitor of glutathione S-transferase pi (GST pi), but its binding site had not been located. Tocopherol iodoacetate (TIA), a reactive analogue, produces a time-dependent inactivation of GST pi to a limit of 25% residual activity. The rate constant for inactivation, k(obs), exhibits a nonlinear dependence on reagent concentration, with K(I) = 19 microM and k(max) = 0.158 min(-)(1). Complete protection against inactivation is provided by tocopherol and tocopherol acetate, whereas glutathione derivatives, electrophilic substrate analogues, buffers, or nonsubstrate hydrophobic ligands have little effect on k(obs). These results indicate that TIA reacts as an affinity label of a distinguishable tocopherol binding site. Loss of activity occurs concomitant with incorporation of about 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. Isolation of the labeled peptide from the tryptic digest shows that Tyr(79) is the only enzymic amino acid modified. The Y79F, Y79S, and Y79A mutant enzymes were generated, expressed, and purified. Changing Tyr(79) to Ser or Ala, but not Phe, renders the enzyme insensitive to inhibition by either tocopherol or tocopherol acetate as demonstrated by increases of at least 49-fold in K(I) values as compared to the wild-type enzyme. These results and examination of the crystal structure of GST pi suggest that tocopherols bind at a novel site, where an aromatic residue at position 79 is essential for binding.  相似文献   

2.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

3.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   

4.
The compound 4-(fluorosulfonyl)benzoic acid (4-FSB) functions as an affinity label of the dimeric pig lung pi class glutathione S-transferase yielding a completely inactive enzyme. Protection against inactivation is provided by glutathione-based ligands, suggesting that the reaction target is near or part of the glutathione binding site. Radioactive 4-FSB is incorporated to the extent of 1 mol per mole of enzyme subunit. Peptide mapping revealed that 4-FSB reacts with two tyrosine residues in the ratio 69% Tyr7 and 31% Tyr106. The ratio is not changed by the addition of ligands. The results suggest that only one of the tyrosine residues can be labeled in the active site of a given subunit; i.e., reactions with Tyr7 and Tyr106 are mutually exclusive. We propose that the difference in labeling of these tyrosine residues is related to their pKa values, with Tyr7 exhibiting the lower pKa. The modified enzyme no longer binds to a S-hexylglutathione-agarose affinity column, even when only one of the active sites contains 4-FSB; these results may reflect interaction between the subunits. We conclude that Tyr7 and Tyr106 of the pig lung class pi glutathione S-transferase are important for function and are located at or close to the substrate binding site of the enzyme.  相似文献   

5.
N-Bromoacetylethanolamine phosphate rapidly and irreversibly inactivates rabbit muscle phosphoglycerate mutase. At high molar ratios of reagent to enzyme, loss of activity (both mutase and phosphatase) approximates pseudo-first order kinetics. A rate-saturation effect is observed with half-maximal rate of inactivation occurring at 0.32 mM reagent, a value close to the Km for 3-phosphoglyceric acid. This datum and the dissociation constant of the 2,3-bisphosphoglycerate-enzyme complex, as determined from inactivation kinetics in the presence of the bisphosphate, suggest that the reagent reacts at the substrate binding site. Inactivation results from the covalent incorporation of about 0.8 mol of reagent/mol of catalytic subunit as determined with 14C-labeled reagent. Incorporation is negligible in the presence of substrate and is reduced 8-fold in the presence of 6 M urea. From amino acid analyses on acid hydrolysates of the inactivated enzyme, we have identified a sulfhydryl group as the site of alkylation. A peptide containing the essential sulfhydryl group has been isolated from a tryptic digest of the enzyme inactivated with labeled reagent; its amino acid composition is Trp1, Lys1,-Cys(Cm)1, Asp1, Ser1, Glu2, Gly1, Ala1, Leu1, Phe2.  相似文献   

6.
A glutathione (GSH) S-transferase (GST), catalyzing the inactivation of reactive sulfate esters as metabolites of carcinogenic arylmethanols, was isolated from the male Sprague-Dawley rat liver cytosol and purified to homogeneity in 12% yield with a purification factor of 901-fold. The purified GST was a homo-dimeric enzyme protein with subunit Mr 26,000 and pI 7.9 and designated as Yrs-Yrs because of its enzyme activity toward "reactive sulfate esters." GST Yrs-Yrs could neither be retained on the S-hexylglutathione gel column nor showed any activity toward 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and 1,2-epoxy-3-(4'-nitrophenoxy)propane. 1-Chloro-2,4-dinitro-benzene was a very poor substrate for this GST. 1-Menaphthyl sulfate was the best substrate for GST Yrs-Yrs among the examined mutagenic arylmethyl sulfates. The enzyme had higher activities toward ethacrynic acid and cumene hydroperoxide. N-terminal amino acid sequence of subunit Yrs, analyzed up to the 25th amino acid, had no homology with any of the known class alpha, mu, and pi enzymes of the Sprague-Dawley rat. Anti-Yrs-IgG raised against GST Yrs-Yrs showed no cross-reactivity with any of subunits Ya, Yc, Yb1, Yb2, and Yp. Anti-IgGs raised against Ya, Yc, Yb1, Yb2, and Yp also showed no cross-reactivity with GST Yrs-Yrs. The purified enzyme proved to differ evidently from the 12 known cytosolic GSTs in various tissues of the rat in all respects. Immunoblot analysis of various tissue cytosols of the male rat indicated that apparent concentrations of the GST Yrs-Yrs protein were in order of liver greater than testis greater than adrenal greater than kidney greater than lung greater than brain greater than skeletal muscle congruent to heart congruent to small intestine congruent to spleen congruent to skin congruent to 0.  相似文献   

7.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

8.
A glutathione S-transferase (GST) from Lactuca sativa was purified to electrophoretic homogeneity approximately 403-fold with a 9.6% activity yield by DEAE-Sephacel and glutathione (GSH)-Sepharose column chromatography. The molecular weight of the enzyme was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the enzyme was significantly inhibited by ShexylGSH and S-(2,4-dinitrophenyl) glutathione. The enzyme displayed activity towards 1-chloro-2,4-dinitrobenzene, a general GST substrate and high activities towards ethacrynic acid. It also exhibited glutathione peroxidase activity toward cumene hydroperoxide.  相似文献   

9.
The ability of physical and pharmacological modulators to increase the cytotoxicity of melphalan was investigated in Chinese hamster ovary cells using a clonogenic cell survival assay. Hyperthermia has potential for use in cancer treatment, particularly as an adjuvant to chemotherapy or radiotherapy. Ethacrynic acid is a glutathione S-transferase inhibitor and also undergoes conjugation with glutathione. Interactions between hyperthermia (41-43 degrees C), ethacrynic acid and melphalan were evaluated in multidrug-resistant (CH(R)C5) cells with overexpression of P-glycoprotein (33.69-fold), and in drug-sensitive (AuxB1) cells. GST alpha was expressed at a higher level (3.65-fold) in CH(R)C5 cells than in sensitive cells, whereas levels of isoforms pi and mu were the same. GST pi was the most highly expressed isoform in the two cell populations. Ethacrynic acid was cytotoxic at elevated temperatures, while it caused little or no cytotoxicity at 37 degrees C. This effect occurred in drug-resistant and drug-sensitive cells, and attributes thermosensitizing properties to ethacrynic acid. Ethacrynic acid (20 microM) alone did not alter the cytotoxicity of melphalan at 37 degrees C. Hyperthermia potentiated drug cytotoxicity in cells, both with and without ethacrynic acid treatment. Ethacrynic acid could be useful in cancer treatment by acting as a thermosensitizer when combined with heat and by enhancing the cytotoxicity of melphalan at elevated temperatures. A major advantage arising from the use of regional hyperthermia is the ability to target drug cytotoxicity to the tumor volume. A useful finding is that ethacrynic acid, heat and/or melphalan are also effective against multidrug-resistant cells with overexpression of P-glycoprotein.  相似文献   

10.
The gene coding for glutathione S-transferase (GST) has been isolated from the Mytilus edulis hepatopancreas. Open reading frame analysis indicated that the M. edulis GST (meGST) gene encodes a protein of 206 amino acid residues with a calculated molecular mass of 23.68 kDa. The deduced amino acid sequence showed high sequence similarity with the sequence of the pi class GST. The meGST was expressed in Escherichia coli, and the recombinant meGST was purified by affinity chromatography and characterized. The recombinant meGST exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). Kinetic analysis with respect to CDNB as substrate gave a K(m) of 0.68 mM and a V(max) of 0.10 mmol/min per mg protein. The recombinant meGST had a maximum activity at approximately pH 8.5, and its optimum temperature was 39 degrees C. The predicted three-dimensional structure of the meGST revealed the N-terminal domain possesses a thioredoxin fold and the six helices of the C-terminal domain make a alpha-helical bundle. These features indicate that the meGST belongs to pi class GST.  相似文献   

11.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

12.
Treatment of Class Pi glutathione S-transferases (GST) such as rat GST P (7-7), human GST pi and mouse GST MII with 0.05-0.1 mM N-ethylmaleimide (NEM) in 0.1 M Tris-HCl (pH 7.8) resulted in almost complete inactivation of these forms, whereas no or less inactivation occurred for GSTs in Class Alpha and Mu under the same conditions. Inactivated GST P lost its S-hexyl-GSH-Sepharose column affinity. About 0.8 mol of [14C]NEM was found to be covalently bound to 1 mol of GST P subunit when 80% of the activity was lost. Similar treatment with N-dimethyl-amino-3,5-dinitrophenyl maleimide, a colored analogue of NEM, followed by trypsin digestion, HPLC and amino acid sequence analysis revealed that one cysteine residue at the 47th position from the N-terminal of the GST P subunit was preferentially modified. Subunits of GST P and GST pi are known to have 4 cysteine residues at the same corresponding positions. The present results suggest that the 47th cysteine residue may be located in the vicinity of the active site of Class Pi GSTs.  相似文献   

13.
A cytosolic glutathione S-transferase from pig lung was purified 210-fold to apparent homogeneity. The enzyme was classified as a class pi isoenzyme on the basis of its physical and chemical properties. It is homodimeric with a subunit Mr of 23,500, has a pI of 7.2, and shows a high specific activity towards ethacrynic acid. The glutathione analogues, S-hexylglutathione and glutathione sulfonate, were strong reversible inhibitors. The enzyme's primary structure, established entirely by protein chemical methods, consists of 203 amino acids and is highly similar (82-84% residue identity) to the rat and human class pi isoenzymes. Furthermore, there was no evidence of microheterogeneity or post-translational modifications. Each subunit contains a highly reactive cysteine residue, the modification of which leads to enzyme inactivation. None of the cysteine residues in the pig enzyme appear to form intramolecular disulfide bonds. Singel crystals of the glutathione-S-transferase-glutathione-sulfonate complex were obtained by the hanging-drop method of vapour diffusion from poly(ethylene glycol) 4000 solutions. The crystals belong to the orthorhombic space group P212121 with unit cell dimensions of a = 10.125 nm, b = 8.253 nm and c = 5.428 nm and diffract to better than 0.22 nm.  相似文献   

14.

Background

The Theta class glutathione transferase GST T1-1 is a ubiquitously occurring detoxication enzyme. The rat and mouse enzymes have high catalytic activities with numerous electrophilic compounds, but the homologous human GST T1-1 has comparatively low activity with the same substrates. A major structural determinant of substrate recognition is the H-site, which binds the electrophile in proximity to the nucleophilic sulfur of the second substrate glutathione. The H-site is formed by several segments of amino acid residues located in separate regions of the primary structure. The C-terminal helix of the protein serves as a lid over the active site, and contributes several residues to the H-site.

Methods

Site-directed mutagenesis of the H-site in GST T1-1 was used to create the mouse Arg234Trp for comparison with the human Trp234Arg mutant and the wild-type rat, mouse, and human enzymes. The kinetic properties were investigated with an array of alternative electrophilic substrates to establish substrate selectivity profiles for the different GST T1-1 variants.

Results

The characteristic activity profile of the rat and mouse enzymes is dependent on Arg in position 234, whereas the human enzyme features Trp. Reciprocal mutations of residue 234 between the rodent and human enzymes transform the substrate-selectivity profiles from one to the other.

Conclusions

H-site residue 234 has a key role in governing the activity and substrate selectivity profile of GST T1-1.

General significance

The functional divergence between human and rodent Theta class GST demonstrates that a single point mutation can enable or suppress enzyme activities with different substrates.  相似文献   

15.
To investigate structural relationship between amphibian and mammalian GSTs the complete amino acid sequence of the major form of glutathione transferase present in toad liver (Bufo bufo) was determined. The enzyme subunit is composed of 210 amino acid residues corresponding to a molecular mass of 24,178 Da. In comparison with the primary structure of amphibian bbGSTP1-1, toad liver GST showed 54% sequence identity. On the other hand, toad liver GST showed about 45-55% sequence identity when compared with other pi class GST and less then 25% identity with GST of other classes. Amino acid residues involved in the H site and in the key and lock structure of the toad enzyme are significantly different from those of bbGSTP1-1 and other mammalian pi class GST. On the basis of its structural and immunological properties the toad liver GST, indicated as bbGSTP2-2, could represent the prototype of a subset of the pi family.  相似文献   

16.
Rat liver glutathione S-transferase, isozyme 1-1, catalyzes the glutathione-dependent isomerization of Delta(5)-androstene-3,17-dione and also binds steroid sulfates at a nonsubstrate inhibitory steroid site. 17beta-Iodoacetoxy-estradiol-3-sulfate, a reactive steroid analogue, produces a time-dependent inactivation of this glutathione S-transferase to a limit of 60% residual activity. The rate constant for inactivation (k(obs)) exhibits a nonlinear dependence on reagent concentration with K(I) = 71 microm and k(max) = 0.0133 min(-1). Complete protection against inactivation is provided by 17beta-estradiol-3,17-disulfate, whereas Delta5-androstene-3,17-dione and S-methylglutathione have little effect on k(obs). These results indicate that 17beta-iodoacetoxy-estradiol-3-sulfate reacts as an affinity label of the nonsubstrate steroid site rather than of the substrate sites occupied by Delta5-androstene-3,17-dione or glutathione. Loss of activity occurs concomitant with incorporation of about 1 mol 14C-labeled reagent/mol enzyme dimer when the enzyme is maximally inactivated. Isolation of the labeled peptide from the chymotryptic digest shows that Cys(17) is the only enzymic amino acid modified. Covalent modification of Cys(17) by 17beta-iodoacetoxy-estradiol-3-sulfate on subunit A prevents reaction of the steroid analogue with subunit B. These results and examination of the crystal structure of the enzyme suggest that the interaction between the two subunits of glutathione S-transferase 1-1, and the electrostatic attraction between the 3-sulfate of the reagent and Arg(14) of subunit B, are important in binding steroid sulfates at the nonsubstrate steroid binding site and in determining the specificity of this affinity label.  相似文献   

17.
The possible role of glutathione S-transferases (GST) in detoxification of fatty acid epoxides generated during lipid peroxidation has been evaluated. Present studies showed that cytosolic human glutathione S-transferases belonging to alpha, mu, and pi classes isolated from human liver and lung catalyzed the conjugation of glutathione and 9,10-epoxystearic acid. The product of enzymatic reaction, i.e., conjugate of GSH and epoxystearic acid, was isolated and characterized. The Michaelis constant (Km) values of the alpha, mu, and pi classes of GSTs for 9,10-epoxystearic acid were found to be 0.47, 0.32 and 0.80 mM, respectively, whereas the maximal velocity (V max) values for the alpha, mu, and pi classes of GSTs were found to be 142, 256, and 52 mol/min/mol, respectively. These results indicate that even though 9,10-epoxystearic acid is a substrate for all the three classes of GSTs, the mu class isozymes have maximum activity toward this substrate and may preferentially metabolize fatty acid epoxides more effectively as compared to the other classes of GSTs.  相似文献   

18.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

19.
The 26-kDa glutathione S-transferase from Schistosoma japonicum (Sj26GST), a helminth worm that causes schistosomiasis, catalyzes the conjugation of glutathione with toxic secondary products of membrane lipid peroxidation. Crystal structures of Sj26GST in complex with glutathione sulfonate (Sj26GSTSLF), S-hexyl glutathione (Sj26GSTHEX), and S-2-iodobenzyl glutathione (Sj26GSTIBZ) allow characterization of the electrophile binding site (H site) of Sj26GST. The S-hexyl and S-2-iodobenzyl moieties of these product analogs bind in a pocket defined by side-chains from the beta1-alpha1 loop (Tyr7, Trp8, Ile10, Gly12, Leu13), helix alpha4 (Arg103, Tyr104, Ser107, Tyr111), and the C-terminal coil (Gln204, Gly205, Trp206, Gln207). Changes in the Ser107 and Gln204 dihedral angles make the H site more hydrophobic in the Sj26GSTHEX complex relative to the ligand-free structure. These structures, together with docking studies, indicate a possible binding mode of Sj26GST to its physiologic substrates 4-hydroxynon-2-enal (4HNE), trans-non-2-enal (NE), and ethacrynic acid (EA). In this binding mode, hydrogen bonds of Tyr111 and Gln207 to the carbonyl oxygen atoms of 4HNE, NE, and EA could orient the substrates and enhance their electrophilicity to promote conjugation with glutathione.  相似文献   

20.
This study was undertaken to elucidate the mechanism(s) of cross-resistance (4.9-fold) to mitomycin C (MMC) in a multi-drug-resistant cell line, P388/R-84. Intracellular accumulation of MMC by sensitive (P388/S) and P388/R-84 cells was comparable. Despite a 32% reduction in NADPH cytochrome P-450 reductase activity (responsible for MMC activation) in P388/R-84 cells, the rate of MMC bio-reduction by sensitive and resistant cells was similar. These results suggested that MMC resistance in P388/R-84 cell line must depend on factors other than impaired drug accumulation or bio-activation. Recent studies suggest that glutathione transferase (GST) dependent drug detoxification also contributes to cellular resistance of a variety of alkylating agents. Even though overexpression of GST has been noted in some MMC resistant tumor cells, it is not known if its level affects sensitivity to MMC. We have, therefore, determined the effect of ethacrynic acid (an inhibitor of GST activity) treatment on MMC cytotoxicity in P388/R-84 cells, which have about 2-fold higher GST activity than P388/S cells. The IC50 value for the inhibition of GST activity in vitro by ethacrynic acid (EA) was 16.5 microM (5 micrograms/ml). A depletion in intracellular GSH was also observed by treating P388/R-84 cells with EA alone or in combination with MMC. A non-toxic concentration of EA (1 microgram/ml; 3.3 microM) increased MMC cytotoxicity by 36% in P388/R-84 cells. MMC cytotoxicity was increased 2-fold by EA treatment in glutathione (GSH)-depleted P388/R-84 cells. These results suggest that GST mediated drug inactivation may represent another important mechanism of MMC resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号