首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In numerous species of social animals and social microorganisms,fitness is positively dependent on population density, at leastin some environments and over some density ranges. This "Alleeeffect" is observed in the cooperative bacterium Myxococcusxanthus during multicellular fruiting body development, duringwhich the standard laboratory genotype sporulates less efficientlyat lower population densities and produces no spores below aminimum threshold density. Here we demonstrate significant quantitativevariation in Allee patterns among distinct natural isolatesof M. xanthus. Isolates with similar developmental performanceat intermediate population densities exhibit stark variationin performance at both very low and very high densities. Suchvariation has implications for evolutionary performance underfluctuating natural environments. It also suggests that distinctintraspecific populations of social animals and other socialmicrobes with different selective histories may vary in theeffects of density on social fitness.  相似文献   

2.
Social interactions among diverse individuals that encounter one another in nature have often been studied among animals but rarely among microbes. For example, the evolutionary forces that determine natural frequencies of bacteria that express cooperative behaviours at low levels remain poorly understood. Natural isolates of the soil bacterium Myxococcus xanthus sampled from the same fruiting body often vary in social phenotypes, such as group swarming and multicellular development. Here, we tested whether genotypes highly proficient at swarming or development might promote the persistence of less socially proficient genotypes from the same fruiting body. Fast-swarming strains complemented slower isolates, allowing the latter to keep pace with faster strains in mixed groups. During development, one low-sporulating strain was antagonized by high sporulators, whereas others with severe developmental defects had those defects partially complemented by high-sporulating strains. Despite declining in frequency overall during competition experiments spanning multiple cycles of development, developmentally defective strains exhibited advantages during the growth phases of competitions. These results suggest that microbes with low-sociality phenotypes often benefit from interacting with more socially proficient strains. Such complementation may combine with advantages at other traits to increase equilibrium frequencies of low-sociality genotypes in natural populations.  相似文献   

3.
The spatial distribution of potential interactants is critical to social evolution in all cooperative organisms. Yet the biogeography of microbial kin discrimination at the scales most relevant to social interactions is poorly understood. Here we resolve the microbiogeography of social identity and genetic relatedness in local populations of the model cooperative bacterium Myxococcus xanthus at small spatial scales, across which the potential for dispersal is high. Using two criteria of relatedness—colony‐merger compatibility during cooperative motility and DNA‐sequence similarity at highly polymorphic loci—we find that relatedness decreases greatly with spatial distance even across the smallest scale transition. Both social relatedness and genetic relatedness are maximal within individual fruiting bodies at the micrometre scale but are much lower already across adjacent fruiting bodies at the millimetre scale. Genetic relatedness was found to be yet lower among centimetre‐scale samples, whereas social allotype relatedness decreased further only at the metre scale, at and beyond which the probability of social or genetic identity among randomly sampled isolates is effectively zero. Thus, in M. xanthus, high‐relatedness patches form a rich mosaic of diverse social allotypes across fruiting body neighbourhoods at the millimetre scale and beyond. Individuals that migrate even short distances across adjacent groups will frequently encounter allotypic conspecifics and territorial kin discrimination may profoundly influence the spatial dynamics of local migration. Finally, we also found that the phylogenetic scope of intraspecific biogeographic analysis can affect the detection of spatial structure, as some patterns evident in clade‐specific analysis were masked by simultaneous analysis of all strains.  相似文献   

4.
Genetically-based social behaviors are subject to evolutionary change in response to natural selection. Numerous microbial systems provide not only the opportunity to understand the genetic mechanisms underlying specific social interactions, but also to observe evolutionary changes in sociality over short time periods. Here we summarize experiments in which behaviors of the social bacterium Myxococcus xanthus changed extensively during evolutionary adaptation to two relatively asocial laboratory environments. M. xanthus moves cooperatively, exhibits cooperative multicellular development upon starvation and also appears to prey cooperatively on other bacteria. Replicate populations of M. xanthus were evolved in both structured (agar plate) and unstructured (liquid) environments that contained abundant resources. The importance of social cooperation for evolutionary fitness in these habitats was limited by the absence of positive selection for starvation-induced spore production or predatory efficiency. Evolved populations showed major losses in all measured categories of social proficiency- motility, predation, fruiting ability, and sporulation. Moreover, several evolved genotypes were observed to exploit the social behavior of their ancestral parent when mixed together during the developmental process. These experiments that resulted in both socially defective and socially exploitative genotypes demonstrate the power of laboratory selection experiments for studying social evolution at the microbial level. Results from additional selection experiments that place positive selection pressure on social phenotypes can be integrated with direct study of natural populations to increase our understanding of principles that underlie the evolution of microbial social behavior. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In the social amoeba Dictyostelium discoideum, thousands of cells aggregate upon starvation to form a multicellular fruiting body, and approximately 20% of them die to form a stalk that benefits the others. The aggregative nature of multicellular development makes the cells vulnerable to exploitation by cheaters, and the potential for cheating is indeed high. Cells might avoid being victimized if they can discriminate among individuals and avoid those that are genetically different. We tested how widely social amoebae cooperate by mixing isolates from different localities that cover most of their natural range. We show here that different isolates partially exclude one another during aggregation, and there is a positive relationship between the extent of this exclusion and the genetic distance between strains. Our findings demonstrate that D. discoideum cells co-aggregate more with genetically similar than dissimilar individuals, suggesting the existence of a mechanism that discerns the degree of genetic similarity between individuals in this social microorganism.  相似文献   

6.
Myxococcus xanthus is a gram-negative soil bacterium best known for its remarkable life history of social swarming, social predation, and multicellular fruiting body formation. Very little is known about genetic diversity within this species or how social strategies might vary among neighboring strains at small spatial scales. To investigate the small-scale population structure of M. xanthus, 78 clones were isolated from a patch of soil (16 by 16 cm) in Tübingen, Germany. Among these isolates, 21 genotypes could be distinguished from a concatemer of three gene fragments: csgA (developmental C signal), fibA (extracellular matrix-associated zinc metalloprotease), and pilA (the pilin subunit of type IV pili). Accumulation curves showed that most of the diversity present at this scale was sampled. The pilA gene contains both conserved and highly variable regions, and two frequency-distribution tests provide evidence for balancing selection on this gene. The functional domains in the csgA gene were found to be conserved. Three instances of lateral gene transfer could be inferred from a comparison of individual gene phylogenies, but no evidence was found for linkage equilibrium, supporting the view that M. xanthus evolution is largely clonal. This study shows that M. xanthus is surrounded by a variety of distinct conspecifics in its natural soil habitat at a spatial scale at which encounters among genotypes are likely.  相似文献   

7.
Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.  相似文献   

8.
The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.  相似文献   

9.
Chemosensory systems (CSS) are complex regulatory pathways capable of perceiving external signals and translating them into different cellular behaviors such as motility and development. In the δ-proteobacterium Myxococcus xanthus, chemosensing allows groups of cells to orient themselves and aggregate into specialized multicellular biofilms termed fruiting bodies. M. xanthus contains eight predicted CSS and 21 chemoreceptors. In this work, we systematically deleted genes encoding components of each CSS and chemoreceptors and determined their effects on M. xanthus social behaviors. Then, to understand how the 21 chemoreceptors are distributed among the eight CSS, we examined their phylogenetic distribution, genomic organization and subcellular localization. We found that, in vivo, receptors belonging to the same phylogenetic group colocalize and interact with CSS components of the respective phylogenetic group. Finally, we identified a large chemosensory module formed by three interconnected CSS and multiple chemoreceptors and showed that complex behaviors such as cell group motility and biofilm formation require regulatory apparatus composed of multiple interconnected Che-like systems.  相似文献   

10.
Myxococcus xanthus is a social bacterium that lives in the soil and undergoes spectacular development to form multicellular fruiting bodies. It contains a large family of eukaryote-like serine/threonine protein kinases. We found that a number of inhibitors for eukaryotic protein serine, threonine, and tyrosine kinases could inhibit the development and sporulation of M. xanthus to various degrees. These results suggest that serine/threonine and tyrosine phosphorylation may be involved in development of M. xanthus. None of the inhibitors tested had any effect on vegetative growth of M. xanthus. Most of them seemed to act during the early stages of development. However, the expression of a very early development-specific gene, Ω4521, was not significantly affected by the inhibitors. The patterns of protein phosphorylation during development were also not significantly altered by the inhibitors, suggesting that the targets of the inhibitors are minor or unstable phosphoproteins but play key roles in fruiting-body formation in M. xanthus.  相似文献   

11.
Cooperation among microbes is important for traits as diverse as antibiotic resistance, pathogen virulence, and sporulation. The evolutionary stability of cooperation against “cheater” mutants depends critically on the extent to which microbes interact with genetically similar individuals. The causes of this genetic social structure in natural microbial systems, however, are unknown. Here, we show that social structure among cooperative Dictyostelium amoebae is driven by the population ecology of colonization, growth, and dispersal acting at spatial scales as small as fruiting bodies themselves. Despite the fact that amoebae disperse while grazing, all it takes to create substantial genetic clonality within multicellular fruiting bodies is a few millimeters distance between the cells colonizing a feeding site. Even adjacent fruiting bodies can consist of different genotypes. Soil populations of amoebae are sparse and patchily distributed at millimeter scales. The fine‐scale spatial structure of cells and genotypes can thus account for the otherwise unexplained high genetic uniformity of spores in fruiting bodies from natural substrates. These results show how a full understanding of microbial cooperation requires understanding ecology and social structure at the small spatial scales microbes themselves experience.  相似文献   

12.
Successful development in multicellular eukaryotes requires cell-cell communication and the coordinated spatial and temporal movements of cells. The complex array of networks required to bring eukaryotic development to fruition can be modeled by the development of the simpler prokaryoteMyxococcus xanthus. As part of its life cycle,M. xanthus forms multicellular fruiting bodies containing differentiated cells. Analysis of the genes essential forM. xanthus development is possible because strains with mutations that block development can be maintained in the vegetative state. Development inM. xanthus is induced by starvation, and early events in development suggest that signaling, stages have evolved to monitor the metabolic state of the developing cell. In the absence of these signals, which include amino acids, α-keto acids, and other intermediary metabolites, the ability of cells to differentiate into myxospores is impaired. Mutations that block genes controlling gliding, motility disrupt the morphogenesis of fruiting bodies and sporogenesis in surprising ways. In this review, we present data that encourage future genetic and biochemical studies of the relationships between motility, cell-cell signaling, and development inM. xanthus.  相似文献   

13.
Many bacteria exhibit multicellular behaviour, with individuals within a colony coordinating their actions for communal benefit. One example of complex multicellular phenotypes is myxobacterial fruiting body formation, where thousands of cells aggregate into large three-dimensional structures, within which sporulation occurs. Here we describe a novel theoretical model, which uses Monte Carlo dynamics to simulate and explain multicellular development. The model captures multiple behaviours observed during fruiting, including the spontaneous formation of aggregation centres and the formation and dissolution of fruiting bodies. We show that a small number of physical properties in the model is sufficient to explain the most frequently documented population-level behaviours observed during development in Myxococcus xanthus.  相似文献   

14.
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.  相似文献   

15.
Myxococcus xanthus is a myxobacterium that exhibits aggregation and cellular differentiation during the formation of fruiting bodies. Therefore, it has become a valuable model system to study the transition to multicellularity via cell aggregation. Although there is a vast set of experimental information for the development on M. xanthus, the dynamics behind cell‐fate determination in this organism's development remain unclear. We integrate the currently available evidence in a mathematical network model that allows to test the set of molecular elements and regulatory interactions that are sufficient to account for the specification of the cell types that are observed in fruiting body formation. Besides providing a dynamic mechanism for cell‐fate determination in the transition to multicellular aggregates of M. xanthus, this model enables the postulation of specific mechanisms behind some experimental observations for which no explanations have been provided, as well as new regulatory interactions that can be experimentally tested. Finally, this model constitutes a formal basis on which the continuously emerging data for this system can be integrated and interpreted.  相似文献   

16.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

17.
Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell–cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (π) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter ρ. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle.  相似文献   

18.
Myxobacteria - survivalists in soil Myxobacteria like Myxococccus xanthus are soil-living microorganisms featuring a complex lifestyle, including movement by coordinated swarming on surfaces, predatory feeding on other microorganisms, and the formation of multicellular fruiting bodies when unfavorable environmental conditions are encountered. Bioinformatic analysis of the large myxobacterial genomes has enabled fascinating insights into the molecular basis for the biosynthesis of complex secondary metabolite structures by myxobacteria, and has set the stage for the discovery of novel natural products. Moreover, well-characterized myxobacteria like M. xanthus increasingly play a role as “biochemical factories” for the biotechnological production of bioactive molecules using synthetic biology approaches.  相似文献   

19.
Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre‐scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony‐merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm‐scale population. We find evidence of balancing selection on the highly variable PA14‐portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME‐mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.  相似文献   

20.
Synergism between morphogenetic mutants of Myxococcus xanthus.   总被引:96,自引:0,他引:96  
Myxococcus xanthus, a social procaryotic microorganism, forms fruiting bodies and myxospores. We have isolated a collection of mutants of M. xanthus that are defective in fruiting morphogenesis and have studied synergistic interaction in pairwise mixtures of these mutants. Certain pairs of these fruiting-defective mutants can fruit when mixed together. Similarly, certain mutants that cannot sporulate under standard fruiting conditions can form myxospores in the presence of wildtype or other nonsporulating mutants. The pattern of synergism between pairs of conditional nonsporulating mutants defines at least three and probably four groups of mutants, such that members of a group cannot synergize with each other but can synergize with members of other groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号