首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.  相似文献   

2.
3.
Associations between environmentally transmitted symbionts and their hosts provide a unique opportunity to study the evolution of specificity and subsequent radiation of tightly coupled host-symbiont assemblages [3, 8, 24]. The evidence provided here from the environmentally transmitted bacterial symbiont Vibrio fischeri and its sepiolid squid host (Sepiolidae: Euprymna) demonstrates how host-symbiont specificity can still evolve without vertical transmission of the symbiont [1]. Infection by intraspecific V. fischeri symbionts exhibited preferential colonization over interspecific V. fischeri symbionts, indicating a high degree of specificity for the native symbiotic strains. Inoculation with symbiotic bacteria from other taxa (monocentrid fish and loliginid squids) produced little or no colonization in two species of Euprymna, despite their presence in the same or similar habitats as these squids. These findings of host specificity between native Vibrios and sepiolid squids provides evidence that the presence of multiple strains of symbionts does not dictate the composition of bacterial symbionts in the host.  相似文献   

4.
Specific bacteria are found in association with animal tissue. Such host-bacterial associations (symbioses) can be detrimental (pathogenic), have no fitness consequence (commensal), or be beneficial (mutualistic). While much attention has been given to pathogenic interactions, little is known about the processes that dictate the reproducible acquisition of beneficial/commensal bacteria from the environment. The light-organ mutualism between the marine Gram-negative bacterium V. fischeri and the Hawaiian bobtail squid, E. scolopes, represents a highly specific interaction in which one host (E. scolopes) establishes a symbiotic relationship with only one bacterial species (V. fischeri) throughout the course of its lifetime. Bioluminescence produced by V. fischeri during this interaction provides an anti-predatory benefit to E. scolopes during nocturnal activities, while the nutrient-rich host tissue provides V. fischeri with a protected niche. During each host generation, this relationship is recapitulated, thus representing a predictable process that can be assessed in detail at various stages of symbiotic development. In the laboratory, the juvenile squid hatch aposymbiotically (uncolonized), and, if collected within the first 30-60 minutes and transferred to symbiont-free water, cannot be colonized except by the experimental inoculum. This interaction thus provides a useful model system in which to assess the individual steps that lead to specific acquisition of a symbiotic microbe from the environment. Here we describe a method to assess the degree of colonization that occurs when newly hatched aposymbiotic E. scolopes are exposed to (artificial) seawater containing V. fischeri. This simple assay describes inoculation, natural infection, and recovery of the bacterial symbiont from the nascent light organ of E. scolopes. Care is taken to provide a consistent environment for the animals during symbiotic development, especially with regard to water quality and light cues. Methods to characterize the symbiotic population described include (1) measurement of bacterially-derived bioluminescence, and (2) direct colony counting of recovered symbionts.  相似文献   

5.
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.  相似文献   

6.
Squids from the genus Euprymna (Cephalopoda: Sepiolidae) and their symbiotic bacteria Vibrio fischeri form a mutualism in which vibrios inhabit a complex light organ within the squid host. A host-mediated daily expulsion event seeds surrounding seawater with symbiotically capable V. fischeri that environmentally colonize newly hatched axenic Euprymna juveniles. Competition experiments using native and non-native Vibrio have shown that this expulsion/re-colonization phenomenon has led to cospeciation in this system in the Pacific Ocean; however, the genetic architecture of these symbiotic populations has not been determined. Using genetic diversity and nested clade analyses we have examined the variation and history of three allopatric Euprymna squid species (E. scolopes of Hawaii, E. hyllebergi of Thailand, and E. tasmanica from Australia) and their respective Vibrio symbionts. Euprymna populations appear to be very genetically distinct from each other, exhibiting little or no migration over large geographical distances. In contrast, Vibrio symbiont populations contain more diverse haplotypes, suggesting both host presence and unidentified factors facilitating long-distance migration structure in Pacific Vibrio populations. Findings from this study highlight the importance of how interactions between symbiotic organisms can unexpectedly shape population structure in phylogeographical studies.  相似文献   

7.
Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.  相似文献   

8.
Vibrio fischeri colonizes the squid Euprymna scolopes in a mutualistic symbiosis. Hatchling squid lack these bacterial symbionts, and V. fischeri strains must compete to occupy this privileged niche. We cloned a V. fischeri gene, designated pilA, that contributes to colonization competitiveness and encodes a protein similar to type IV-A pilins. Unlike its closest known relatives, Vibrio cholerae mshA and vcfA, pilA is monocistronic and not clustered with genes associated with pilin export or assembly. Using wild-type strain ES114 as the parent, we generated an in-frame pilA deletion mutant, as well as pilA mutants marked with a kanamycin resistance gene. In mixed inocula, marked mutants were repeatedly outcompeted by ES114 (P < 0.05) but not by an unmarked pilA mutant, for squid colonization. In contrast, the ratio of mutant to ES114 CFUs did not change during 70 generations of coculturing. The competitive defect of pilA mutants ranged from 1.7- to 10-fold and was more pronounced when inocula were within the range estimated for V. fischeri populations in Hawaiian seawater (200 to 2,000 cells/ml) than when higher densities were used. ES114 also outcompeted a pilA mutant by an average of twofold at lower inoculum densities, when only a fraction of the squid became infected, most by only one strain. V. fischeri strain ET101, which was isolated from Euprymna tasmanica and is outcompeted by ES114, lacks pilA; however, 11 other diverse V. fischeri isolates apparently possess pilA. The competitive defect of pilA mutants suggests that cell surface molecules may play important roles in the initiation of beneficial symbioses in which animals must acquire symbionts from a mixed community of environmental bacteria.  相似文献   

9.
10.
The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent. J. Exp. Zool. 286:280-296, 2000.  相似文献   

11.
In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long-term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial 'toxin' that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT-degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.  相似文献   

12.
13.
During light organ colonization of the squid Euprymna scolopes by Vibrio fischeri, host-derived mucus provides a surface upon which environmental V. fischeri forms a biofilm and aggregates prior to colonization. In this study we defined the temporal and spatial characteristics of this process. Although permanent colonization is specific to certain strains of V. fischeri, confocal microscopy analyses revealed that light organ crypt spaces took up nonspecific bacteria and particles that were less than 2 micro m in diameter during the first hour after hatching. However, within 2 h after inoculation, these cells or particles were not detectable, and further entry by nonspecific bacteria or particles appeared to be blocked. Exposure to environmental gram-negative or -positive bacteria or bacterial peptidoglycan caused the cells of the organ's superficial ciliated epithelium to release dense mucin stores at 1 to 2 h after hatching that were used to form the substrate upon which V. fischeri formed a biofilm and aggregated. Whereas the uncolonized organ surface continued to shed mucus, within 48 h of symbiont colonization mucus shedding ceased and the formation of bacterial aggregations was no longer observed. Eliminating the symbiont from the crypts with antibiotics restored the ability of the ciliated fields to secrete mucus and aggregate bacteria. While colonization by V. fischeri inhibited mucus secretion by the surface epithelium, secretion of host-derived mucus was induced in the crypt spaces. Together, these data indicate that although initiation of mucus secretion from the superficial epithelium is nonspecific, the inhibition of mucus secretion in these cells and the concomitant induction of secretion in the crypt cells are specific to natural colonization by V. fischeri.  相似文献   

14.
Motility is required for Vibrio fischeri cells to interact with and specifically colonize the light-emitting organ of their host, the squid Euprymna scolopes. To investigate the influence of motility on the expression of the symbiotic phenotype, we isolated mutants of the squid symbiont V. fischeri ES114 that had altered migration abilities. Spontaneous hyperswimmer (HS) mutants, which migrated more rapidly in soft agar and were hyperflagellated relative to the wild type, were isolated and grouped into three phenotypic classes. All of the HS strains tested, regardless of class, were delayed in symbiosis initiation. This result suggested that the hypermotile phenotype alone contributes to an inability to colonize squid normally. Class III HS strains showed the greatest colonization defect: they colonized squid to a level that was only 0.1 to 10% that achieved by ES114. In addition, class III strains were defective in two capabilities, hemagglutination and luminescence, that have been previously described as colonization factors in V. fischeri. Class II and III mutants also share a mucoid colony morphology; however, class II mutants can colonize E. scolopes to a level that was 40% of that achieved by ES114. Thus, the mucoid phenotype alone does not contribute to the greater defect exhibited by class III strains. When squid were exposed to ES114 and any one of the HS mutant strains as a coinoculation, the parent strain dominated the resulting symbiotic light-organ population. To further investigate the colonization defects of the HS strains, we used confocal laser-scanning microscopy to visualize V. fischeri cells in their initial interaction with E. scolopes tissue. Compared to ES114, HS strains from all three classes were delayed in two behaviors involved in colonization: (i) aggregation on host-derived mucus structures and (ii) migration to the crypts. These results suggest that, while motility is required to initiate colonization, the presence of multiple flagella may actually interfere with normal aggregation and attachment behavior. Furthermore, the pleiotropic nature of class III HS strains provides evidence that motility is coregulated with other symbiotic determinants in V. fischeri.  相似文献   

15.
16.
17.
Although most Vibrio fischeri isolates are capable of symbiosis, the coevolution of certain strains with the Hawaiian bobtail squid, Euprymna scolopes, has led to specific adaptation to this partnership. For instance, strains from different hosts or from a planktonic environment are ineffective squid colonists. Even though bioluminescence is a symbiotic requirement, curiously, symbionts of E. scolopes are dim in culture relative to fish symbionts and free-living isolates. It is unclear whether this dim phenotype is related to the symbiosis or simply coincidental. To further explore the basis of symbiont specificity, we developed an experimental evolution model that utilizes the daily light organ venting behavior of the squid and horizontal acquisition of symbionts for serial passage of cultures. We passaged six populations each derived from the squid-naïve strains of V. fischeri MJ11 (a fish symbiont) and WH1 (a free-living isolate) through a series of juvenile squid light organs. After 15 serially colonized squid for each population, or an estimated 290–360 bacterial generations, we isolated representatives of the light organ populations and characterized their bioluminescence. Multiple evolved lines of both strains produced significantly less bioluminescence both in vitro and in vivo. This reduction in bioluminescence did not correlate with reduced quorum sensing for most isolates tested. The remarkable phenotypic convergence with squid symbionts further emphasizes the importance of bioluminescence in this symbiosis, and suggests that reduced light production is a specific adaptation to the squid.  相似文献   

18.
Euprymna scolopes, a Hawaiian species of bioluminescent squid, harbors Vibrio fischeri as its specific light organ symbiont. The population of symbionts grew inside the adult light organ with an average doubling time of about 5 h, which produced an excess of cells that were expelled into the surrounding seawater on a diurnal basis at the beginning of each period of daylight. These symbionts, when expelled into the ambient seawater, maintain or slightly increase their numbers for at least 24 h. Hence, locations inhabited by their hosts periodically receive a daily input of symbiotic V. fischeri cells and, as a result, become significantly enriched with these bacteria. As estimated by hybridization with a species-specific luxA gene probe, the typical number of V. fischeri CFU, both in the water column and in the sediments of E. scolopes habitats, was as much as 24 to 30 times that in similar locations where squids were not observed. In addition, the number of symbiotic V. fischeri CFU in seawater samples that were collected along a transect through Kaneohe Bay, Hawaii, decreased as a function of the distance from a location inhabited by E. scolopes. These findings constitute evidence for the first recognized instance of the abundance and distribution of a marine bacterium being driven primarily by its symbiotic association with an animal host.  相似文献   

19.
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号