首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
African trypanosomes exert significant morbidity and mortality in man and livestock. Only a few drugs are available for the treatment of trypanosome infections and therefore, the development of new anti-trypanosomal agents is required. Previously it has been shown that bloodstream-form trypanosomes are sensitive to the iron chelator deferoxamine. In this study the effect of 13 iron chelators on the growth of Trypanosoma brucei, T. congolense and human HL-60 cells was tested in vitro. With the exception of 2 compounds, all chelators exhibited anti-trypanosomal activities, with 50% inhibitory concentration (IC50) values ranging between 2.1 – 220 μM. However, the iron chelators also displayed cytotoxicity towards human HL-60 cells and therefore, only less favourable selectivity indices compared to commercially available drugs. Interfering with iron metabolism may be a new strategy in the treatment of trypanosome infections. More specifically, lipophilic iron-chelating agents may serve as lead compounds for novel anti-trypanosomal drug development.  相似文献   

2.
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.  相似文献   

3.
Only a few drugs are available for chemotherapy of African trypanosomiasis and there is an urgent need for the development of new anti-trypanosomal agents. In this study, the anti-helminthic drug niclosamide was tested for its trypanocidal activity in vitro using culture-adapted bloodstream forms of Trypanosoma brucei brucei and Trypanosoma congolense. The concentrations of niclosamide to reduce the growth rate by 50% and to kill all cells were in the low- and mid micromolar ranges for T. b. brucei and T. congolense, respectively. The very low toxicity of niclosamide for mammals makes the compound interesting for drug development for African trypanosomiasis.  相似文献   

4.
The therapeutic effect of allopurinol was studied in an experimental Trypanosoma cruzi infection (Chagas disease) in outbred IVIC-NMRI and inbred C57B1/6J mice intraperitoneally inoculated with the parasites 2–6 days before drug treatment. Allopurinol protected against T. cruzi infection. This effect was evidenced by highly significant reductions in both parasitemias and mortality rates and increased survival time in allopurinol-treated animals compared with untreated infected mice. Allopurinol protected effectively when administered in 10 daily doses of 32–64 mg/kg body wt/day injected intraperitoneally. Using direct methods, parasitemia remained undetectable for at least 310 days. An indirect method, subinoculation to susceptible mice, showed a few circulating trypanosomes which decreased greatly in number after a second schedule of allopurinol treatment; finally no trypanosomes were detectable 275 days after treatment initiation. Allopurinol also induced a strong trypanostatic effect when tested in vitro on five different Trypanosoma cruzi strains (optimal inhibitory concentration: 3 μg/ml). These results suggest that allopurinol protects mice with acute Chagas infection by a direct trypanostatic effect. The low toxicity of this drug suggests its use in more chronic experimental Chagas infections.  相似文献   

5.
A chlorodiazirine derivative of pentamidine was synthesized and tested for anti-trypanosomal activity using EATRO stock 164 trypanosomes in cell culture. Anti-trypanosomal activity was measured as a decrease in [3H]hypoxanthine incorporation by the organisms. The derivative, 3,3'-[1,5-pentanediylbis(oxy-4,1-phenylene)]bis(3-chloro-3H-diazir ine), at a treatment level of 0.1 microM inhibited isotope incorporation by 40-50% compared to nontreated controls. At this concentration, pentamidine inhibited incorporation only 10-15%. The derivative is a nonionic molecule with much different solubility properties than the parent compound and should readily cross the blood-brain barrier.  相似文献   

6.
A non-targeted metabolomics-based approach is presented that enables the study of pathways in response to drug action with the aim of defining the mode of action of trypanocides. Eflornithine, a polyamine pathway inhibitor, and nifurtimox, whose mode of action involves its metabolic activation, are currently used in combination as first line treatment against stage 2, CNS-involved, human African trypanosomiasis (HAT). Drug action was assessed using an LC-MS based non-targeted metabolomics approach. Eflornithine revealed the expected changes to the polyamine pathway as well as several unexpected changes that point to pathways and metabolites not previously described in bloodstream form trypanosomes, including a lack of arginase activity and N-acetylated ornithine and putrescine. Nifurtimox was shown to be converted to a trinitrile metabolite indicative of metabolic activation, as well as inducing changes in levels of metabolites involved in carbohydrate and nucleotide metabolism. However, eflornithine and nifurtimox failed to synergise anti-trypanosomal activity in vitro, and the metabolomic changes associated with the combination are the sum of those found in each monotherapy with no indication of additional effects. The study reveals how untargeted metabolomics can yield rapid information on drug targets that could be adapted to any pharmacological situation.  相似文献   

7.
Eight new platinum(II) complexes with 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-trypanosomal activity were synthesized, characterized and in vitro evaluated. Most of the complexes showed IC50 values in the micromolar range against two different strains of Trypanosoma cruzi, causative agent of Chagas disease (American Trypanosomiasis). In addition, most of the newly developed complexes, together with the analogous platinum 5-nitrofuraldehyde containing thiosemicarbazones previously reported, resulted more active than the reference trypanocidal drug nifurtimox on the infective trypomastigote form of the parasite. Their capacity to produce free radicals that could lead to parasite death was evaluated by ESR experiments in the parasite and by respiration measurements. Compounds were tested for their DNA interaction ability. Results showed that some of the compounds could act as dual inhibitors in the parasite, through production of toxic free radicals and interaction with DNA. All the results were compared with those previously reported for the free ligands, the analogous palladium(II) compounds and the previously reported series of platinum(II) compounds.  相似文献   

8.
9.
The proanthocyanidin polymer fractions of the leaves of the forage legume Dorycnium rectum were analysed by acid catalysis with benzyl mercaptan, NMR and ES-MS. The results showed that D. rectum differs from other temperate proanthocyanidin-containing forage legumes in that the range of polymers extends up to very high degrees of polymerisation. Three fractions were characterised as low, medium, and high molecular weight proanthocyanidin fractions with mean degree of polymerisations of 10.3, 41 and 127, respectively. Epigallocatechin was the most abundant extension unit and the terminating flavan-3-ols comprised largely catechin and gallocatechin units in equal proportions. Formation of thiolyated dimer products showed the interflavan-linkages of the lower molecular weight proanthocyanidins to be predominantly C4-->C8 with a small amount of C4-->C6. ES-MS spectra distinguished lower from higher polymeric proanthocyanidins from M2- to M8(2)-. The antibacterial activity of proanthocyanidin fractions against pure cultures of microbes selected from the ruminal population to represent fibre degrading, proteolytic and hyper ammonia producing bacteria in broth culture was evaluated. The activity of proanthocyanidin fractions against Clostridium aminophilum, Butyrivibrio fibrisolvens and Clostridium proteoclasticum was significantly dependent on their structure but not so against Ruminococcus albus and Peptostreptococcus anaerobius. The latter observation was unique in that they were sensitive to all proanthocyanidin fractions evaluated, even at the lowest concentration (100 microg/ml). The results suggest the effects of the extractable proanthocyanidins on rumen microbes should be considered when evaluating an alternative proanthocyanidin-containing forage source for ruminants, such as D. rectum.  相似文献   

10.
Groups of rats were immunosuppressed with antithymocyte serum (ATS) and infected with Trypanosoma lewisi. Immunodiffusion studies were performed which demonstrated that trypanosome exoantigens, present in the plasma of these animals, were precipitated by antibodies in the sera of rats undergoing a typical primary T. lewisi infection; extracts of trypanosomes which had been collected from ATS-treated rats contained antigens which also were precipitated by antibodies in these sera. These precipitating antibodies could not be detected using either the plasma of untreated infected rats or extracts of trypanosomes which had been collected from untreated rats. With the exoantigens, precipitating antibodies were detected in serum samples collected from rats 14 to 250 days after infection. With the extract, precipitating antibodies were found as early as 5 days after infection and could be detected as late as 90 days after infection. Antigens of trypanosome extracts partially blocked the precipitin reactions between antisera and exoantigens, suggesting the presence of common antigens in the two preparations. Intact trypanosomes were serologically more reactive when collected from immunosuppressed rats. Trypanosomes collected from ATS-treated rats were agglutinated by antisera at titers fourfold higher than trypanosomes collected from untreated hosts. Absorption with exoantigens from immunosuppressed infected rats blocked trypanosome agglutination, indicating that these antigens are of cell surface origin. The experiments suggest that a likely result of immunosuppressing the host is a trypanosome antigen preparation that is a more reactive serodiagnostic reagent.  相似文献   

11.
The ability of BALB/c mice to resist reinfection with Leishmania donovani following chemotherapy was studied. BALB/c mice, infected with L. donovani, were treated on Days 7 and 8 postinfection with free, niosomal, or liposomal sodium stibogluconate. It was found that all three drug treatments caused a dramatic reduction in liver parasite burdens as measured on Days 6 and 29 post-treatment. On Day 6 postdrug treatment infection with L. donovani amastigotes, of mice from infected, drug-treated groups, along with age- and sex-matched uninfected controls, showed that at 23 days later, significantly fewer parasites were recovered from the livers of reinfected animals compared with controls given their first infection. Treatment of mice with sodium stibogluconate 6 days prior to a primary infection significantly reduced the number of parasites recovered 14 days later, especially using the carrier form of the drug. In vivo macrophage activity in the liver, as measured by the uptake of radiolabeled horseradish peroxidase immune complex, was significantly raised following stibogluconate treatment of infected but not uninfected mice. These results suggest that a state of resistance persists in the liver of infected mice following chemotherapy which may in part be due to local macrophage activation but also to an unsuspected persistance of the drug.  相似文献   

12.
Conventionally, drugs are discovered by testing chemically synthesized compounds against a battery of in vivo biological screens. Information technology and Omic science enabled us for high throughput screening of compound libraries against biological targets and hits are then tested for efficacy in cells or animals. Chancroid, caused by Haemophilus ducreyi is a public health problem and has been recognized as a cofactor for Human Immunodeficiency Virus (HIV) transmission. It facilitates HIV transmission by providing an accessible portal entry, promoting viral shedding, and recruiting macrophages as well as CD4 cells to the skin. So, there is a requirement to develop an efficient drug to combat Chancroid that can also diminish HIV infection. In-silico screening of potential inhibitors against the target may facilitate in detection of the novel lead compounds for developing an effective chemo preventive strategy against Haemophilus ducreyi. The present study has investigated the effects of approximately 1100 natural compounds that inhibit three vital enzymes viz. Phosphoenolpyruvate phosphotransferase, Acetyl-coenzyme A carboxylase and Fructose 1, 6-bisphosphatase of Haemophilus ducreyi in reference to a commercial drug Rifabutin. Results reveal that the lead compound uses less energy to bind to target. The lead compound parillin has also been predicted as less immunogenic in comparison to Rifabutin. Further, better molecular dynamics, pharmacokinetics, pharmacodynamics and ADME-T properties establish it as an efficient chancroid preventer.  相似文献   

13.
The marked antiviral activity of (S,S-1,2-bis(5-methoxy-2-benzimidazolyl)-1,2-ethanediol (Abbott 36683) against rhinoviruses in tissue culture warranted investigation of its antiviral activity in vivo. Antiviral levels in mouse sera were attained with an oral dose as small as 10 mg/kg and detectable antiviral levels of drug were also found in lung, liver, kidney, intestinal contents, and urine of mice given a single 300 mg/kg oral dose. Antiviral serum levels were also obtained when monkeys were given a single oral dose of Abbott 36683. Six chimpanzees were infected with 100 median tissue culture infective dose units (TCID(50)) of rhinovirus 30. Three of the animals were treated with Abbott 36683, 100 mg/kg daily for 4 consecutive days. Virus shedding occurred in the infected controls but could not be demonstrated in the treated animals from postinfection days 1 to 8. Two of the treated animals did, however, shed virus on day 9. The compound was retested in chimpanzees at dosage levels of 15 and 50 mg/kg daily for 4 days. Each animal was challenged with 100 TCID(50) of rhinovirus 49. Partial protection was obtained. In a third trial, a single 100 mg/kg dose of the compound was administered to chimpanzees infected with rhinovirus 44. Virus was isolated from all throat smears taken from treated animals, indicating that at the lowest drug level no protection occurred.  相似文献   

14.
Human African trypanosomiasis (HAT) manifests in two stages of disease: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging. Parasites were detected in the brains of infected mice following treatment with diminazene, a drug which cures stage 1 but not stage 2 disease. Intravital multi-photon microscopy revealed that trypanosomes enter the brain meninges as early as day 5 post-infection but can be killed by diminazene, whereas those that cross the blood-brain barrier and enter the parenchyma by day 21 survived treatment and later caused bloodstream recrudescence. In contrast, all bioluminescent parasites were permanently eliminated by treatment with melarsoprol and DB829, compounds known to cure stage 2 disease. We show that this use of imaging reduces by two thirds the time taken to assess drug efficacy and provides a dual-modal imaging platform for monitoring trypanosome infection in different areas of the brain.  相似文献   

15.
In the search for new therapeutic tools against parasitic diseases caused by the Kinetoplastids Leishmania spp. and Trypanosoma cruzi, a novel gold(I) triphenylphosphine complex with the bioactive coligand pyridine-2-thiol N-oxide (mpo) was synthesized and characterized by using analytical and conductometric measurements, electrospray ionization-mass spectrometry (ESI) and electronic, FTIR and 1H and 31P NMR spectroscopies. A dinuclear structure is suggested for the complex. At a 1 microM concentration the complex induced in vitro after 30 min a potent leishmanicidal effect (LD50) against promastigotes of Leishmania (L.) mexicana while on Leishmania (V.) braziliensis with the same concentration only a leishmanistatic effect (IC75) was observed 48 h after treatment. Similar differential susceptibilities were also found when testing the ligand mpo, but at a higher dose (5 μM). In addition, the compound showed growth inhibitory effect on Dm28c T. cruzi epimastigotes in culture (IC50 0.09 μM), being even more active than the anti-trypanosomal reference drug Nifurtimox (IC50 6 μM). DNA interaction studies showed that this biomolecule does not constitute a main target for the mpo complex currently tested. Instead, the significant potentiation of the antiproliferative effect against both Leishmania species and T. cruzi could be associated to the inhibition of NADH fumarate reductase, a kinetoplastid parasite-specific enzyme absent in the host. Furthermore, due to its low unspecific cytotoxicity on mammalian cells (J774 macrophages), the new gold complex showed a selective anti-parasite activity. It constitutes a promising new potent chemotherapeutic alternative to be evaluated in vivo in experimental models of leishmaniasis and Chagas´ disease.  相似文献   

16.
Blast transformation studies have indicated a diminished T cell response in spleen cell preparations from rabbits infected with Treponema pallidum. IL-2 synthesis by T lymphocytes is required for proliferation of these cells. Thus, Con A-induced IL-2 generation was measured in syphilitic animals infected for 9 to 14 days. IL-2 production in the infected rabbits was only one-half that observed for uninfected rabbits. This marked decrease in IL-2 was not caused by decreased IL-1 secretion by adherent cells from infected animals because similar levels were found in both infected and uninfected splenic cultures. This decrease was also not caused by an increase in infected spleen cell adsorption of IL-2; similar numbers of receptors for this IL were present in Con A-stimulated infected and uninfected splenic preparations. The inhibited IL-2 production in infected spleen cells was reversed upon removal of the adherent cells and also elevated upon addition of indomethacin to the cultures. PGE levels were also elevated in splenic cultures from infected animals. Finally, IL-2 synthesis, when evaluated at various days postinfection, showed that at 4 days, splenic cells generated twice as much IL-2 as uninfected cells. At 9 to 14 days, IL-2 levels were dramatically decreased (50% lower than that observed in uninfected cultures), and suppression of IL-2 by adherent cells was observed as late as 35 days post-infection. We propose that premature down regulation (suppression) of IL-2 secretion is mediated by adherent cells via a cyclo-oxygenase product, most likely PGE. These results may explain why most, but not all, treponemes are cleared during infection, and why the secondary manifestations of the disease occur.  相似文献   

17.
Leishmaniasis is a neglected disease and endemic in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate the effect of RT-01, an organotellurane compound presenting biological activities, in 2 experimental systems against Leishmania amazonensis. The in vitro system consisted of promastigotes and amastigotes forms of the parasite, and the in vivo system consisted of L. amazonensis infected BALB/c mice, an extremely susceptible mouse strain. The compound proved to be toxic against promastigotes and amastigotes. The study also showed that treatment with RT-01 produces an effect similar to that treatment with the reference antimonial drug, Glucantime, in L. amazonensis infected mice. The best results were obtained following RT-01 intralesional administration (720 µg/kg/day); mice showed significant delay in the development of cutaneous lesions and decreased numbers of parasites obtained from the lesions. Significant differences in tissue pathology consisted mainly of no expressive accumulation of inflammatory cells and well-preserved structures in the skin tissue of RT-01-treated mice compared with expressive infiltration of infected cells replacing the skin tissue in lesions of untreated mice. These findings highlight the fact that the apparent potency of organotellurane compounds, together with their relatively simple structure, may represent a new avenue for the development of novel drugs to combat parasitic diseases.  相似文献   

18.

Background

The discovery of Nanobodies (Nbs) with a direct toxic activity against African trypanosomes is a recent advancement towards a new strategy against these extracellular parasites. The anti-trypanosomal activity relies on perturbing the highly active recycling of the Variant-specific Surface Glycoprotein (VSG) that occurs in the parasite''s flagellar pocket.

Methodology/Principal Findings

Here we expand the existing panel of Nbs with anti-Trypanosoma brucei potential and identify four categories based on their epitope specificity. We modified the binding properties of previously identified Nanobodies Nb_An05 and Nb_An33 by site-directed mutagenesis in the paratope and found this to strongly affect trypanotoxicity despite retention of antigen-targeting properties. Affinity measurements for all identified anti-trypanosomal Nbs reveal a strong correlation between trypanotoxicity and affinity (KD), suggesting that it is a crucial determinant for this activity. Half maximal effective (50%) affinity of 57 nM was calculated from the non-linear dose-response curves. In line with these observations, Nb humanizing mutations only preserved the trypanotoxic activity if the KD remained unaffected.

Conclusions/Significance

This study reveals that the binding properties of Nanobodies need to be compatible with achieving an occupancy of >95% saturation of the parasite surface VSG in order to exert an anti-trypanosomal activity. As such, Nb-based approaches directed against the VSG target would require binding to an accessible, conserved epitope with high affinity.  相似文献   

19.
The effects of diclazuril on the bursa of Fabricius (BF) structure and secretory IgA (SIgA) expression in chickens infected with Eimeria tenella were examined. The morphology of the BF was observed by hematoxylin and eosin staining, while ultrastructural changes were monitored by transmission electron microscopy. E. tenella infection caused the BF cell volumes to decrease, irregularly arranged, as well as, enlargement of the intercellular space. Diclazuril treatment alleviated the physical signs of damages associated with E. tenella infection. The SIgA expression in BF was analyzed by immunohistochemistry technique. The SIgA expression increased significantly by 350.4% (P<0.01) after E. tenella infection compared to the normal control group. With the treatment of diclazuril, the SIgA was relatively fewer in the cortex, and the expression level was significantly decreased by 46.7% (P<0.01) compared with the infected and untreated group. In conclusion, E. tenella infection in chickens induced obvious harmful changes in BF morphological structure and stimulated the expression of SIgA in the BF. Diclazuril treatment effectively alleviated the morphological changes. This result demonstrates a method to develop an immunological strategy in coccidiosis control.  相似文献   

20.
Further investigation of the aerial parts of Alomia myriadenia revealed an halimane diterpene identified as ent-8S,12S-epoxy-7R,16-dihydroxyhalima-5(10),13-dien-15,16-olide along with the known ent-16-hydroxylabda-7,13-dien-15,16-olide, ent-12R-hydroxylabda-7,13-dien-15,16-olide, 6,7-methylenedioxycoumarin (ayapin), and kaempferol-7-methylether (rhamnocitrin). Evaluated in a panel of human cancer cell lines, the 16-hydroxylabade diterpene was the most active, showing an ED(50) value of 0.3 mug/ml against Lu1 (human lung cancer) cells. Tested in vitro against Trypanosoma cruzi in infected murine blood, this compound caused lysis of 100% of the parasites at 250 mug/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号