首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Zymomonas mobilis gene encoding phosphoglycerate kinase (EC 2.7.3.2), pgk, has been cloned into Escherichia coli and sequenced. It consists of 336 amino acids, including the N-terminal methionine, with a molecular weight of 41,384. This promoterless gene is located 225 base pairs downstream from the gap gene and is part of the gap operon. Previous studies have shown that the specific activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase do not change coordinately in Z. mobilis, although the two enzymes appear to be under the control of a common promoter. The translated amino acid sequence for the Z. mobilis phosphoglycerate kinase is less conserved than those of eucaryotic genes. A comparison of known sequences for phosphoglycerate kinase revealed a high degree of conservation of structure with 102 amino acid positions being retained by all. In general, the amino acid positions at the boundaries of beta-sheet and alpha-helical regions and those connecting these regions were more highly conserved than the amino acid positions within regions of secondary structure.  相似文献   

3.
The Zymomonas mobilis genes encoding alcohol dehydrogenase I (adhA), alcohol dehydrogenase II (adhB), and pyruvate decarboxylase (pdc) were overexpressed in Escherichia coli and Z. mobilis by using a broad-host-range vector containing the tac promoter and the lacIq repressor gene. Maximal IPTG (isopropyl-beta-D-thiogalactopyranoside) induction of these plasmid-borne genes in Z. mobilis resulted in a 35-fold increase in alcohol dehydrogenase I activity, a 16.7-fold increase in alcohol dehydrogenase II activity, and a 6.3-fold increase in pyruvate decarboxylase activity. Small changes in the activities of these enzymes did not affect glycolytic flux in cells which are at maximal metabolic activity, indicating that flux under these conditions is controlled at some other point in metabolism. Expression of adhA, adhB, or pdc at high specific activities (above 8 IU/mg of cell protein) resulted in a decrease in glycolytic flux (negative flux control coefficients), which was most pronounced for pyruvate decarboxylase. Growth rate and flux are imperfectly coupled in this organism. Neither a twofold increase in flux nor a 50% decline from maximal flux caused any immediate change in growth rate. Thus, the rates of biosynthesis and growth in this organism are not limited by energy generation in rich medium.  相似文献   

4.
ZM6100(RP1::Tn951), a strain of Zymomonas mobilis containing the lactose transposon Tn951 on the broad host range plasmid RP1, progressively lost all plasmid markers in batch culture under non-selective conditions. After 120 generations less than 0.1% of the population retained the plasmid markers. ZM6306, derived from ZM6100(RP1::Tn951) by prolonged tetracycline selection, showed 100% stability for all plasmid markers when grown without selection pressure in both batch and continuous culture. In continuous culture, the synthesis of β-galactosidase was induced by the addition of lactose, and low levels of galactose were detected together with a small increase in ethanol concentration.  相似文献   

5.
6.
The nucleotide sequence downstream of the grp gene, encoding the glutamate uptake regulatory protein of Zymomonas mobilis, was determined. Three clustered genes (gluE, gluM, and gluP) close to ghe grp gene, but on the opposite strand, were identified. These genes encode a high-affinity transport system for glutamate and aspartate. The gluP gene product is a polypeptide of 25.4 kDa and contains segments with significant similiarity to the ATP-binding proteins of binding-protein-dependent transport systems. The GluM polypeptide (22.9 kDa) is highly hydrophobic and consists of four potential membrane-spanning domains. The hydrophilic gluE gene product, with a molecular mass of 22.1 kDa, contains a region with sequence similiarity to some of the periplasmic binding proteins and a sequence motif of a signal peptide for periplasmic localization. The transport system could not be functionally expressed in Z. mobilis. However, when heterologously expressed in Escherichia coli, it catalyzed uptake of glutamate, which was characterized kinetically. Our results suggest that the glutamate transport system encoded by the gluEMP operon is repressed in Z. mobilis by the regulatory protein Grp. Received: 18 September 1995 / Accepted: 14 February 1996  相似文献   

7.
8.
The Zymomonas mobilis alcohol dehydrogenase II gene (adhB) was overexpressed 7- to 14-fold on a recombinant plasmid, accompanied by a small decrease in growth rate. A fragment containing the truncated gene with promoter reduced expression from the chromosomal gene as measured immunologically and enzymatically, consistent with the presence of a trans-active regulatory factor and positive regulatory control. Both the complete gene and the promoter fragment increased pyruvate decarboxylase and glucokinase activities, with no effect on alcohol dehydrogenase I or eight glycolytic enzymes. Tandem promoters from adhB expressed beta-galactosidase at higher levels than did either promoter alone in operon fusions. Addition of 50 microM zinc sulfate in minimal medium reduced the expression of adhB and of the operon fusions. Abundant but inactive alcohol dehydrogenase II was produced in iron-limited cells. This inactive enzyme did not form intracellular aggregates, and no morphological changes were apparent by transmission electron microscopy.  相似文献   

9.
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.  相似文献   

10.
11.
Summary An Escherichia coli-Zymomonas mobilis shuttle vector was constructed from a 15.5 kb native plasmid of ZM6 00 and the E. coli plasmid, pBR329. Integrative transfer of this shuttle vector from E. coli to Z. mobilis was achieved with the aid of the mobilizing plasmid, pRK2013. The shuttle vector was stable in Z. mobilis for at least 300 generations without antibiotic selection.Offprint requests to: S. F. Delaney  相似文献   

12.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer 0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0  相似文献   

13.
Pyruvate decarboxylase (EC 4.1.1.1), the penultimate enzyme in the alcoholic fermentation pathway of Zymomonas mobilis, converts pyruvate to acetaldehyde and carbon dioxide. The complete nucleotide sequence of the structural gene encoding pyruvate decarboxylase from Zymomonas mobilis has been determined. The coding region is 1704 nucleotides long and encodes a polypeptide of 567 amino acids with a calculated subunit mass of 60,790 daltons. The amino acid sequence was confirmed by comparison with the amino acid sequence of a selection of tryptic fragments of the enzyme. The amino acid composition obtained from the nucleotide sequence is in good agreement with that obtained experimentally.  相似文献   

14.
Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to d-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be ∼28 kDa by sodium dodecyl sulfate-polyacrylamide gel and ∼58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65°C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k cat of 4.83 s−1 for NADH (k cat/K m = 27.3 s−1 mM−1) and k cat of 2.79 s−1 for NADPH (k cat/K m = 10.8 s−1 mM−1). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.  相似文献   

15.
The gene encoding the enzyme gluconolactonase (D-glucono-delta-lactone lactonohydrolase, EC 3.1.1.17) has been isolated from a recombinant library of genomic Zymomonas mobilis DNA, by detection of enzyme activity in recombinant clones. The gene encoded a protein of 320 amino acids, which is processed to the mature enzyme of 285 amino acids (31079 Da) by cleavage at an Ala-Ala bond, as determined from N-terminal sequencing of the purified enzyme. A minor sequence commencing at amino acid 6 is suggestive of an alternative start of translation at the ATG codon of amino acid 5; in this case the expressed enzyme would remain cytoplasmic, whereas it is presumed that the main portion is directed to the membrane of periplasm by the leader sequence.  相似文献   

16.
The culture conditions for Rhodococcus sp. N-774 cells showing high nitrile hydratase activity and the reaction conditions for acrylamide production by the resting cells were optimized. Thiamine was essential for the growth of the strain. Yeast extract and Fe2 + or Fe3 + remarkably promoted the formation of nitrile hydratase of the cells. The reaction proceeded optimally at temperatures below 30°C. Incubation for 1 hr at above 40°C resulted in inactivation of the enzyme. Through reaction at a temperature as low as 0°C, the inhibition and inactivation of the enzyme activity by the substrate, acrylonitrile, and the product, acrylamide, were remarkably reduced, and higher accumulation of acrylamide could be attained. Under the optimal conditions, a more than 20% (w/v) acrylamide solution was obtained with a conversion yield of nearly 100%. Thus, the aqueous acrylamide solution obtained showed a high enough quality for use for the commercial preparation of polyacrylamide.  相似文献   

17.
Among the triterpenoids of the bacterium Zymomonas mobilis a novel hopanoid, 32-oxobacteriohopane-33,34,35-triol beta-linked via its primary hydroxy group to glucosamine, has been isolated as a minor compound.  相似文献   

18.
The DnaK protein of Zymomonas mobilis (DnaKz) was identified and found to be 80% identical to the DnaK protein of Escherichia coli on the basis of the sequence of the N-terminal 21 amino acids. The dnaKz gene was cloned and found to be expressed in a thermosensitive dnaK mutant of Escherichia coli. Expression of the foreign gene restored a thermoresistant phenotype but failed to modulate the heat shock response in E. coli.  相似文献   

19.
From a genomic library of Zymomonas mobilis prepared in Escherichia coli, two clones (carrying pZH4 and pZH5) resistant to the mercuric ion were isolated. On partial restriction analysis these two clones appeared to have the same 2.9 kb insert. Mercuric reductase activity was assayed from the Escherichia coli clone carrying pZH5 and it was Hg(2+)-inducible, NADH dependent and also required 2-mercaptoethanol for its activity. The plasmid pZH5 encoded three polypeptides, mercuric reductase (merA; 65 kDa), a transport protein (merT 18-17 kDa) and merC (15 kDa) as analysed by SDS-PAGE. Southern blot analysis showed the positive signal for the total DNA prepared from Hgr Z. mobilis but not with the Hgs strain which was cured for a plasmid (30 kb). These results were also confirmed by isolating this plasmid from Hgr Z. mobilis and transforming into E. coli. Moreover the plasmid pZH5 also hybridized with the mer probes derived from Tn21.  相似文献   

20.
Pyruvate decarboxylase (E.C. 4.1.1.1), the key enzyme in the glycolytic pathway to ethanol, was isolated in gram amounts from Zymomonas mobilis for structural studies. The primary structure was determined by automated Edman degradation and compared with that deduced from the DNA sequence of the structural gene, previously published by two groups (A. D. Neale, R. K. Scopes, R. E. H. Wettenhall, and N. J. Hoogenraad, 1987, Nucleic Acids Res. 15, 1753-1761; M. Reynen, and H. Sahm, 1988, J. Bacteriol. 170, 3310-3313). The peptide data differ from the published DNA sequences, which also deviate from each other. Crystals diffracting to about 0.3 nm resolution have been obtained by the hanging drop vapor diffusion method. The space group was identified as P4(1)22 or its enantiomorphs containing presumably one tetramer per asymmetric unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号