共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Phosphoglycerate kinase gene from Zymomonas mobilis: cloning, sequencing, and localization within the gap operon. 总被引:1,自引:19,他引:1
下载免费PDF全文

The Zymomonas mobilis gene encoding phosphoglycerate kinase (EC 2.7.3.2), pgk, has been cloned into Escherichia coli and sequenced. It consists of 336 amino acids, including the N-terminal methionine, with a molecular weight of 41,384. This promoterless gene is located 225 base pairs downstream from the gap gene and is part of the gap operon. Previous studies have shown that the specific activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase do not change coordinately in Z. mobilis, although the two enzymes appear to be under the control of a common promoter. The translated amino acid sequence for the Z. mobilis phosphoglycerate kinase is less conserved than those of eucaryotic genes. A comparison of known sequences for phosphoglycerate kinase revealed a high degree of conservation of structure with 102 amino acid positions being retained by all. In general, the amino acid positions at the boundaries of beta-sheet and alpha-helical regions and those connecting these regions were more highly conserved than the amino acid positions within regions of secondary structure. 相似文献
3.
Use of the tac promoter and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis.
下载免费PDF全文

The Zymomonas mobilis genes encoding alcohol dehydrogenase I (adhA), alcohol dehydrogenase II (adhB), and pyruvate decarboxylase (pdc) were overexpressed in Escherichia coli and Z. mobilis by using a broad-host-range vector containing the tac promoter and the lacIq repressor gene. Maximal IPTG (isopropyl-beta-D-thiogalactopyranoside) induction of these plasmid-borne genes in Z. mobilis resulted in a 35-fold increase in alcohol dehydrogenase I activity, a 16.7-fold increase in alcohol dehydrogenase II activity, and a 6.3-fold increase in pyruvate decarboxylase activity. Small changes in the activities of these enzymes did not affect glycolytic flux in cells which are at maximal metabolic activity, indicating that flux under these conditions is controlled at some other point in metabolism. Expression of adhA, adhB, or pdc at high specific activities (above 8 IU/mg of cell protein) resulted in a decrease in glycolytic flux (negative flux control coefficients), which was most pronounced for pyruvate decarboxylase. Growth rate and flux are imperfectly coupled in this organism. Neither a twofold increase in flux nor a 50% decline from maximal flux caused any immediate change in growth rate. Thus, the rates of biosynthesis and growth in this organism are not limited by energy generation in rich medium. 相似文献
4.
The nucleotide sequence downstream of the grp gene, encoding the glutamate uptake regulatory protein of Zymomonas mobilis, was determined. Three clustered genes (gluE, gluM, and gluP) close to ghe grp gene, but on the opposite strand, were identified. These genes encode a high-affinity transport system for glutamate and aspartate. The gluP gene product is a polypeptide of 25.4 kDa and contains segments with significant similiarity to the ATP-binding proteins of binding-protein-dependent transport systems. The GluM polypeptide (22.9 kDa) is highly hydrophobic and consists of four potential membrane-spanning domains. The hydrophilic gluE gene product, with a molecular mass of 22.1 kDa, contains a region with sequence similiarity to some of the periplasmic binding proteins and a sequence motif of a signal peptide for periplasmic localization. The transport system could not be functionally expressed in Z. mobilis. However, when heterologously expressed in Escherichia coli, it catalyzed uptake of glutamate, which was characterized kinetically. Our results suggest that the glutamate transport system encoded by the gluEMP operon is repressed in Z. mobilis by the regulatory protein Grp. Received: 18 September 1995 / Accepted: 14 February 1996 相似文献
5.
Expression of Zymomonas mobilis adhB (encoding alcohol dehydrogenase II) and adhB-lacZ operon fusions in recombinant Z. mobilis. 总被引:1,自引:6,他引:1
下载免费PDF全文

The Zymomonas mobilis alcohol dehydrogenase II gene (adhB) was overexpressed 7- to 14-fold on a recombinant plasmid, accompanied by a small decrease in growth rate. A fragment containing the truncated gene with promoter reduced expression from the chromosomal gene as measured immunologically and enzymatically, consistent with the presence of a trans-active regulatory factor and positive regulatory control. Both the complete gene and the promoter fragment increased pyruvate decarboxylase and glucokinase activities, with no effect on alcohol dehydrogenase I or eight glycolytic enzymes. Tandem promoters from adhB expressed beta-galactosidase at higher levels than did either promoter alone in operon fusions. Addition of 50 microM zinc sulfate in minimal medium reduced the expression of adhB and of the operon fusions. Abundant but inactive alcohol dehydrogenase II was produced in iron-limited cells. This inactive enzyme did not form intracellular aggregates, and no morphological changes were apparent by transmission electron microscopy. 相似文献
6.
Shihui Yang Yaoping Zhang Lydia M. Contreras Sagar M. Utturkar Steven D. Brown Michael E. Himmel Min Zhang 《Microbial biotechnology》2016,9(6):699-717
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context. 相似文献
7.
8.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K
m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K
m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer
0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0 相似文献
9.
Norihiko Misawa Tomoyuki Okamoto Katsumi Nakamura Kumpei Kitamura Hideshi Yanase Kenzo Tonomura 《Bioscience, biotechnology, and biochemistry》2013,77(12):3201-3203
The culture conditions for Rhodococcus sp. N-774 cells showing high nitrile hydratase activity and the reaction conditions for acrylamide production by the resting cells were optimized. Thiamine was essential for the growth of the strain. Yeast extract and Fe2 + or Fe3 + remarkably promoted the formation of nitrile hydratase of the cells. The reaction proceeded optimally at temperatures below 30°C. Incubation for 1 hr at above 40°C resulted in inactivation of the enzyme. Through reaction at a temperature as low as 0°C, the inhibition and inactivation of the enzyme activity by the substrate, acrylonitrile, and the product, acrylamide, were remarkably reduced, and higher accumulation of acrylamide could be attained. Under the optimal conditions, a more than 20% (w/v) acrylamide solution was obtained with a conversion yield of nearly 100%. Thus, the aqueous acrylamide solution obtained showed a high enough quality for use for the commercial preparation of polyacrylamide. 相似文献
10.
Prokaryotic triterpenoids. A novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis. 总被引:1,自引:0,他引:1
下载免费PDF全文

Among the triterpenoids of the bacterium Zymomonas mobilis a novel hopanoid, 32-oxobacteriohopane-33,34,35-triol beta-linked via its primary hydroxy group to glucosamine, has been isolated as a minor compound. 相似文献
11.
The gene encoding the enzyme gluconolactonase (D-glucono-delta-lactone lactonohydrolase, EC 3.1.1.17) has been isolated from a recombinant library of genomic Zymomonas mobilis DNA, by detection of enzyme activity in recombinant clones. The gene encoded a protein of 320 amino acids, which is processed to the mature enzyme of 285 amino acids (31079 Da) by cleavage at an Ala-Ala bond, as determined from N-terminal sequencing of the purified enzyme. A minor sequence commencing at amino acid 6 is suggestive of an alternative start of translation at the ATG codon of amino acid 5; in this case the expressed enzyme would remain cytoplasmic, whereas it is presumed that the main portion is directed to the membrane of periplasm by the leader sequence. 相似文献
12.
From a genomic library of Zymomonas mobilis prepared in Escherichia coli, two clones (carrying pZH4 and pZH5) resistant to the mercuric ion were isolated. On partial restriction analysis these two clones appeared to have the same 2.9 kb insert. Mercuric reductase activity was assayed from the Escherichia coli clone carrying pZH5 and it was Hg(2+)-inducible, NADH dependent and also required 2-mercaptoethanol for its activity. The plasmid pZH5 encoded three polypeptides, mercuric reductase (merA; 65 kDa), a transport protein (merT 18-17 kDa) and merC (15 kDa) as analysed by SDS-PAGE. Southern blot analysis showed the positive signal for the total DNA prepared from Hgr Z. mobilis but not with the Hgs strain which was cured for a plasmid (30 kb). These results were also confirmed by isolating this plasmid from Hgr Z. mobilis and transforming into E. coli. Moreover the plasmid pZH5 also hybridized with the mer probes derived from Tn21. 相似文献
13.
G Miczka J Vernau M R Kula B Hofmann D Schomburg 《Biotechnology and applied biochemistry》1992,15(2):192-206
Pyruvate decarboxylase (E.C. 4.1.1.1), the key enzyme in the glycolytic pathway to ethanol, was isolated in gram amounts from Zymomonas mobilis for structural studies. The primary structure was determined by automated Edman degradation and compared with that deduced from the DNA sequence of the structural gene, previously published by two groups (A. D. Neale, R. K. Scopes, R. E. H. Wettenhall, and N. J. Hoogenraad, 1987, Nucleic Acids Res. 15, 1753-1761; M. Reynen, and H. Sahm, 1988, J. Bacteriol. 170, 3310-3313). The peptide data differ from the published DNA sequences, which also deviate from each other. Crystals diffracting to about 0.3 nm resolution have been obtained by the hanging drop vapor diffusion method. The space group was identified as P4(1)22 or its enantiomorphs containing presumably one tetramer per asymmetric unit. 相似文献
14.
Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis. 总被引:1,自引:1,他引:1
下载免费PDF全文

G P Michel 《Journal of bacteriology》1993,175(10):3228-3231
The DnaK protein of Zymomonas mobilis (DnaKz) was identified and found to be 80% identical to the DnaK protein of Escherichia coli on the basis of the sequence of the N-terminal 21 amino acids. The dnaKz gene was cloned and found to be expressed in a thermosensitive dnaK mutant of Escherichia coli. Expression of the foreign gene restored a thermoresistant phenotype but failed to modulate the heat shock response in E. coli. 相似文献
15.
The stereospecificity of the ferrous-ion-dependent alcohol dehydrogenase from Zymomonas mobilis 总被引:1,自引:0,他引:1
Alcohol dehydrogenase from Zymomonas mobilis has been found to transfer the pro-R hydrogen of NADH to acetaldehyde. This is the first report of the stereospecificity of a dehydrogenase in the mechanistic and structural class of Fe2+-dependent alcohol dehydrogenases and offers an opportunity to expand mechanistic hypotheses relating stereospecificity, reaction mechanism and reaction thermodynamics in dehydrogenases. 相似文献
16.
Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis 总被引:11,自引:0,他引:11
Using differential dye-ligand chromatography and affinity elution with a substrate analog, 6-phosphogluconate dehydratase (EC 4.2.1.12) has been isolated from extracts of Zymomonas mobilis in a one-step procedure with 50% recovery. The specific activity of freshly isolated enzyme was 245 units mg-1. The enzyme contains iron, and it is rapidly inactivated in oxidizing conditions. It is inhibited by glycerophosphates, most strongly by the D-alpha-isomer which structurally corresponds to half of the substrate molecule. 相似文献
17.
Pappas KM Kouvelis VN Saunders E Brettin TS Bruce D Detter C Balakireva M Han CS Savvakis G Kyrpides NC Typas MA 《Journal of bacteriology》2011,193(18):5051-5052
Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. 相似文献
18.
Andreas Desiniotis Vassili N. Kouvelis Karen Davenport David Bruce Chris Detter Roxanne Tapia Cliff Han Lynne A. Goodwin Tanja Woyke Nikos C. Kyrpides Milton A. Typas Katherine M. Pappas 《Journal of bacteriology》2012,194(21):5966-5967
Zymomonas mobilis is an ethanologenic bacterium that has been studied for use in biofuel production. Of the sequenced Zymomonas strains, ATCC 29191 has been described as the phenotypic centrotype of Zymomonas mobilis subsp. mobilis, the taxon that harbors the highest ethanol-producing Z. mobilis strains. ATCC 29191 was isolated in Kinshasa, Congo, from palm wine fermentations. This strain is reported to be a robust levan producer, while in recent years it has been employed in studies addressing Z. mobilis respiration. Here we announce the finishing and annotation of the ATCC 29191 genome, which comprises one chromosome and three plasmids. 相似文献
19.
20.