首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Using genealogy analysis, we studied genetic diversity of 340 cultivars of spring bread wheat that were released on the territory of Russia in 1929–2003. Trends in the temporal change of genetic diversity were inferred from analysis of a set of n × m matrices, where n is the number of the released cultivars and m is the number of original ancestors. The pool of original ancestors of the spring bread wheat cultivars for the total period of study included 255 landraces, of which 88 were from the former USSR and modern Russia. The original ancestors showed great differences in their presence in the cultivar sets examined and, consequently, in their importance for the gene pool of Russian spring wheats. The distributions of contributions of dominant original ancestors to cultivar diversity were significantly different in different regions, indicating that the ancestors were specific for the cultivation conditions. During the last 75 years, the genetic diversity of the spring bread wheat cultivars has been increasing owing to the wide use of foreign material in Russian breeding programs. However, our analysis showed that about 60 landraces, including the Russian ones, were lost during the studied time period. The lost part makes up 35% of the gene pool of the Russian original ancestors. It is reasonable to assume that the lost landraces carried a gene complex f or adaptation to specific Russian environments. Specificity of the contributions of the original ancestors in the sets of cultivars produced in different breeding centers was established. A comparative analysis of genetic similarity of cultivars was carried out using coefficients of parentage. Significant differences in this parameter between breeding institutes and regions of cultivation were revealed.  相似文献   

2.
Based on genealogical analysis, the genetic diversity of 78 spring durum wheat cultivars released in Russia in 1929-2004 have been examined. The temporal trends of change in diversity were studied using series of n x m matrices (where n is the number of the cultivars and m is the number of original ancestors) and calculating coefficients of parentage in sets of cultivars released in particular years. The pool of original ancestors of spring durum wheat cultivars includes 90 landraces and old varieties, more than a half (57%) of which originate from European countries, including Russia and Ukraine (45%). The original ancestors strongly differ in the frequency of presence in the cultivar pedigrees. Landraces Beloturka, Sivouska, Kubanka (T. durum Desf.), Transbaikalian emmer, Yaroslav emmer (T. dicoccum Schuebl.), Poltavka (T. aestivum L.), and the original ancestors of cultivars Kharkov 46, Narodnaya, and Melanopus 1932 enter in the pedigrees of more than half of cultivars created within the framework of various breeding programs. At that, their distribution by cultivars from different breeding centers strongly varies. Analysis of temporal dynamics of genetic diversity, based on genetic profiles and coefficients of parentage, has shown that the genetic diversity of Russian durum wheats increased during the period examined. Nevertheless, genetic erosion of the local material-a loss of approximately 20% of the pool of Russian original ancestors-has been found. The contribution of the original ancestors to the pedigrees of different cultivars, constructed in different breeding centers and recommended for cultivation in different regions, has been estimated. The variation of the released cultivars was highest in the Lower Volga region and lowest in the Ural region. In all, the lower threshold of genetic diversity in all regions does not reach the critical level, corresponding to the similarity of half-sibs. The set of modern cultivars included in the Russian Official List 2004 has a cluster structure.  相似文献   

3.
Based on genealogical analysis, the genetic diversity of 78 spring durum wheat cultivars released in Russia in 1929–2004 have been examined. The temporal trends of change in diversity were studied using series of n × m matrices (where n is the number of the cultivars and m is the number of original ancestors) and calculating coefficients of parentage in sets of cultivars released in particular years. The pool of original ancestors of spring durum wheat cultivars includes 90 landraces and old varieties, more than a half (57%) of which originate from European countries, including Russia and Ukraine (45%). The original ancestors strongly differ in the frequency of presence in the cultivar pedigrees. Landraces Beloturka, Sivouska, Kubanka (T. durum Desf.), Transbaikalian emmer, Yaroslav emmer (T. dicoccum Schuebl.), Poltavka (T. aestivum L.), and the original ancestors of cultivars Kharkov 46, Narodnaya, and Melanopus 1932 enter in the pedigrees of more than half of cultivars created within the framework of various breeding programs. At that, their distribution by cultivars from different breeding centers strongly varies. Analysis of temporal dynamics of genetic diversity, based on genetic profiles and coefficients of parentage, has shown that the genetic diversity of Russian durum wheats increased during the period examined. Nevertheless, genetic erosion of the local material—a loss of approximately 20% of the pool of Russian original ancestors—has been found. The contribution of the original ancestors to the pedigrees of different cultivars, constructed in different breeding centers and recommended for cultivation in different regions, has been estimated. The variation of the released cultivars was highest in the Lower Volga region and lowest in the Ural region. In all, the lower threshold of genetic diversity in all regions does not reach the critical level, corresponding to the similarity of half-sibs. The set of modern cultivars included in the Russian Official List 2004 has a cluster structure.  相似文献   

4.
Genealogical analysis was employed in studying the time course of changes in genetic diversity of spring barley cultivars released in former Czechoslovakia and the modem Czech Republic. Cultivars from different regions proved to significantly differ in the distribution of dominant ancestor contributions, suggesting a specificity of original ancestors to different cultivation conditions. A comparison of cultivar groups differing in end use showed that the genetic diversity of malting cultivars was significantly lower than that of feed cultivars, although modern malting and feed cultivars of Czechia and Slovakia have virtually the same genetic basis. Temporal analysis showed that diversity tended to increase through decades. While new original ancestors were introduced in pedigrees, especially in the past 30 years, the number of local landraces and old cultivars gradually decreased. The losses accounted for about two-thirds of the local germplasm. Thus, a substantial increase in genetic diversity was accompanied by genetic erosion of the local spring barley gene pool of former Czechoslovakia. A cluster structure was observed for the set of spring barley cultivars released in the postwar period. The coefficient of parentage averaged overall possible pairs of cultivars introduced in the Czech National List was estimated at 0.11. It was concluded that the genetic diversity of modern spring barley cultivars in the Czech Republic is at an acceptable level.  相似文献   

5.
Genealogical analysis was employed in studying the time course of changes in genetic diversity of spring barley cultivars released in former Czechoslovakia and the modern Czech Republic. Cultivars from different regions proved to significantly differ in the distribution of dominant ancestor contributions, suggesting a specificity of original ancestors to different cultivation conditions. A comparison of cultivar groups differing in end use showed that the genetic diversity of malting cultivars was significantly lower than that of feed cultivars, although modern malting and feed cultivars of Czechia and Slovakia have virtually the same genetic basis. Temporal analysis showed that diversity tended to increase through decades. While new original ancestors were introduced in pedigrees, especially in the past 30 years, the number of local landraces and old cultivars gradually decreased. The losses accounted for about two-thirds of the local germplasm. Thus, a substantial increase in genetic diversity was accompanied by genetic erosion of the local spring barley gene pool of former Czechoslovakia. A cluster structure was observed for the set of spring barley cultivars released in the postwar period. The coefficient of parentage averaged over all possible pairs of cultivars introduced in the Czech National List was estimated at 0.11. It was concluded that the genetic diversity of modern spring barley cultivars in the Czech Republic is at an acceptable level.  相似文献   

6.
Genealogical analysis was used to study the dynamics of genetic diversity in Russian cultivars of winter common wheat from 1929 to 2005. The Shannon diversity index of the total set of released cultivars remained almost unchanged, although the number of original ancestors (landraces and genetic lines) increased almost tenfold in the period under study. This was explained in terms of the dependence of the modified Shannon diversity index on two parameters, the number of original ancestors and the mean coefficient of parentage. Significant direct effects were revealed: a positive effect of the former parameter and a negative of the latter. As a result, the increase in the number of original ancestors was compensated by the increase in relatedness of cultivars. Genetic erosion of realized diversity was observed, as a half of Russian landraces were lost. Although the mean coefficient of parentage did not reach its critical value (R = 0.25), cultivars of some regions (Central and Volga-Vyatka) proved to be closely related. A favorable gradual decrease in the mean coefficient of parentage was observed in the past 15 years. A set of modem winter wheat cultivars, which were introduced in the Russian State Catalog from 2002 to 2005, displayed a cluster structure. The overwhelming majority of cultivars formed two clusters originating from Bezostaya 1 (67% of cultivars) and Mironovskaya 808 (31%).  相似文献   

7.

Key message

High-throughput genotyping of Swiss bread wheat and spelt accessions revealed differences in their gene pools and identified bread wheat landraces that were not used in breeding.

Abstract

Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.
  相似文献   

8.
Hybrid necrosis genotypes have been identified in 125 Russian cultivars of winter bread wheat. More than half of them (56%) carry the Ne2 gene (genotype ne1ne1Ne2Ne2); others are free of necrosis genes (genotype ne1ne1ne2ne2). The possible causes of the increase in the Ne2 allele frequency and the loss of the Ne1Ne1ne2ne2 genotype in modem Russian cultivars of winter wheat are discussed. The principal component method has been used to compare the structures of the genetic diversity of cultivars differing in the hybrid necrosis genotype. It has been found that the Ne2 allele in winter wheat cultivars from northern Russia has originated from the cultivar Mironovskaya 808, whereas the cultivar Bezostaya 1 is not a source of this gene. In cultivars from southern Russia, the presence of the Ne2 allele is also mainly accounted for by the use of Mironovskaya 808 wheat in their breeding. The recessive genotype is explained by the presence of descendants of the cultivar Odesskaya 16 in the pedigrees of southern Russian winter wheats. The genetic relationship of cultivars with identical and different necrosis genotypes has been analyzed in nine regions of the Russian Federation.  相似文献   

9.
Genealogical analysis was used to study the dynamics of genetic diversity in Russian cultivars of winter common wheat from 1929 to 2005. The Shannon diversity index of the total set of released cultivars remained almost unchanged, although the number of original ancestors (landraces and genetic lines) increased almost tenfold in the period under study. This was explained in terms of the dependence of the modified Shannon diversity index on two parameters, the number of original ancestors and the mean coefficient of parentage. Significant direct effects were revealed: a positive effect of the former parameter and a negative of the latter. As a result, the increase in the number of original ancestors was compensated by the increase in relatedness of cultivars. Genetic erosion of released diversity was observed, as a half of Russian landraces were lost. Although the mean coefficient of parentage did not reach its critical value $(\bar R = 0.25)$ , cultivars of some regions (Central and Volga-Vyatka) proved to be closely related. A favorable gradual decrease in the mean coefficient of parentage was observed in the past 15 years. A set of modern winter wheat cultivars, which were introduced in the Russian Official List from 2002 to 2005, displayed a cluster structure. The overwhelming majority of cultivars formed two clusters originating from Bezostaya 1 (67% of cultivars) and Mironovskaya 808 (31%).  相似文献   

10.
Hybrid necrosis genotypes have been identified in 125 Russian cultivars of winter bread wheat. More than half of them (56%) carry the Ne2 gene (genotype ne1ne1Ne2Ne2); others are free of necrosis genes (genotype ne1ne1ne2ne2). The possible causes of the increase in the Ne2 allele frequency and the loss of the Ne1Ne1ne2ne2 genotype in modern Russian cultivars of winter wheat are discussed. The principal component method has been used to compare the structures of the genetic diversity of cultivars differing in the hybrid necrosis genotype. It has been found that the Ne2 allele in winter wheat cultivars from northern Russia has originated from the cultivar Mironovskaya 808, whereas the cultivar Bezostaya 1 is not a source of this gene. In cultivars from southern Russia, the presence of the Ne2 allele is also mainly accounted for by the use of Mironovskaya 808 wheat in their breeding. The recessive genotype is explained by the presence of descendants of the cultivar Odesskaya 16 in the pedigrees of southern Russian winter wheats. The genetic relationship of cultivars with identical and different necrosis genotypes has been analyzed in nine regions of the Russian Federation.  相似文献   

11.
Pre-harvest sprouting (PHS) in bread wheat is a major abiotic constraint reducing yield and influencing the production of high quality grain. In China both spring and winter wheat regions are affected by PHS. Sichuan lies in southwest China, where the most of rainfall occurs during April to September when wheat is harvested. The present investigation was conducted to identify the allelic variability of Vp1, a gene that plays a role in maintenance and induction of dormancy, among Sichuan landraces and recent cultivars with different dormancy levels and to find potential sources of PHS resistance for breeding. Sichuan landrace and cultivar wheat accessions had a wide range of dormancy levels. The average germination index (GI) of Sichuan landrace accessions was 0.232, whereas at 0.674 it was much higher for cultivars. The different dormancy levels between landraces and cultivars indicated that pre-harvest sprouting resistance might have been neglected in recent Sichuan wheat breeding programs. The average GI of white grained accessions was higher than for red grained accessions. Particular Vp-1B gene fragments were specific in landraces or cultivars and in white or red grained accessions. The results indicated that Vp-1B markers could be used to distinguish cultivars and landraces. Significant relationships between certain Vp-1B allelesand GI of Sichuan wheat accessions were shown by Spearman’s rank correlation analysis.  相似文献   

12.
Comparative genealogical analysis of North American (the United States and Canada) and Eastern European (Russia and Ukraine) winter wheat cultivars resistant and susceptible to common bunt has been performed. Analysis of variance applied to North American wheats has demonstrated that resistant and susceptible cultivars significantly differ from each other with respect to the contributions of common ancestors. The contributions of Oro (Bt4 and Bt7), Rio (Bt6), White Odessa (Bt1), and Florence (Bt3) to the resistant cultivars are significantly higher than their contributions to the susceptible ones. This demonstrates that the use of these resistance donors in wheat breeding for several decades has been effective. The contribution of PI-178383 (Bt8, Bt9, and Bt10) is considerably higher in the group of resistant cultivars bred after 1965. The mean contributions of Federation (Bt7) and Nebred (Bt4) are significantly higher in the group of resistant cultivars obtained before 1965; however, the differences in the contributions of these donors between new resistant and susceptible cultivars became nonsignificant. Among the Russian and Ukrainian cultivars, there are differences between groups of resistant and susceptible cultivars from different regions determined by the differences between the regional populations of the pathogen in racial composition. In the northern region, the contributions of the wheat grass (Agropyron glaucum) and the rye cultivar Eliseevskaya are significantly higher in the resistant cultivars; in the southern region, a local cultivar of the Odessa oblast is the prevalent resistant cultivar. In addition, cultivar Yaroslav Emmer is likely to be effective in the northern region; and foreign sources (Oro, Florence, Federation, and Triticum timopheevii), in the southern region. Very few sources of vertical resistance to common bunt are used for winter wheat breeding in Russia and Ukraine. The decrease in genetic diversity in favor of a few identical genes may cause adequate changes in the pathogen population and subsequent proliferation of the pathogen on the genetically identical substrate. A new interpretation of the resistance of line Lutescens 6028 as a source of new genes, Bt12 and Bt13, is suggested. Both genealogical and segregation analyses have shown that the genes determining the resistance of this line may be identical to those described earlier (Bt1, Bt3, Bt4, Bt6, and Bt7); and the high resistance of this line is determined by a combination of these genes.  相似文献   

13.
Diversity of North European oat analyzed by SSR, AFLP and DArT markers   总被引:1,自引:0,他引:1  
Oat is an important crop in Nordic countries both for feed and human consumption. Maintaining a high level of genetic diversity is essential for both breeding and agronomy. A panel of 94 oat accessions was used in this study, including 24 museum accessions over 100- to 120-year old and 70 genebank accessions from mainly Nordic countries and Germany, covering different breeding periods. Sixty-one polymorphic SSR, 201 AFLP and 1056 DArT markers were used to evaluate the past and present genetic diversity of the Nordic gene pool. Norwegian accessions showed the highest diversity, followed by Swedish and Finnish, with German accessions the least diverse. In addition, the Nordic accessions appeared to be highly interrelated and distinct from the German, reflecting a frequent germplasm exchange and interbreeding among Nordic countries. A significant loss of diversity happened at the transition from landraces and old cultivars to modern cultivars. Modern oat originated from only a segment of the landraces and left the remainder, especially black oat, unused. However, no significant overall diversity reduction was found during modern breeding periods, although fluctuation of diversity indices was observed. The narrow genetic basis of the modern Nordic gene pool calls for increasing genetic diversity through cultivar introduction and prebreeding based on neglected sources like the Nordic black oat.  相似文献   

14.
Wheat was one of the first crops to be domesticated more than 10,000 years ago in the Middle East. Molecular genetics and archaeological data have allowed the reconstruction of plausible domestication scenarios leading to modern cultivars. For diploid einkorn and tetraploid durum wheat, a single domestication event has likely occurred in the Karacadag Mountains, Turkey. Following a cross between tetraploid durum and diploid T.?tauschii, the resultant hexaploid bread wheat was domesticated and disseminated around the Caucasian region. These polyploidisation events facilitated wheat domestication and created genetic bottlenecks, which excluded potentially adaptive alleles. With the urgent need to accelerate genetic progress to confront the challenges of climate change and sustainable agriculture, wild ancestors and old landraces represent a reservoir of underexploited genetic diversity that may be utilized through modern breeding methods. Understanding domestication processes may thus help identifying new strategies.  相似文献   

15.
Comparative genealogical analysis of North American (the United States and Canada) and Eastern European (Russia and Ukraine) winter wheat cultivars resistant and susceptible to common bunt has been performed. Analysis of variance applied to North American wheats has demonstrated that resistant and susceptible cultivars significantly differ from each other with respect to the contributions of common ancestors. The contributions of Oro (Bt4and Bt7), Rio (Bt6), White Odessa (Bt1), and Florence (Bt3) to the resistant cultivars are significantly higher than their contributions to the susceptible ones. This demonstrates that the use of these resistance donors in wheat breeding for several decades has been effective. The contribution of PI-178383 (Bt8, Bt9,and Bt10) is considerably higher in the group of resistant cultivars bred after 1965. The mean contributions of Federation (Bt7) and Nebred (Bt4) are significantly higher in the group of resistant cultivars obtained before 1965; however, the differences in the contributions of these donors between new resistant and susceptible cultivars became nonsignificant. Among the Russian and Ukrainian cultivars, there are differences between groups of resistant and susceptible cultivars from different regions determined by the differences between the regional populations of the pathogen in racial composition. In the northern region, the contributions of the wheat grass (Agropyron glaucum) and the rye cultivar Eliseevskaya are significantly higher in the resistant cultivars; in the southern region, a local cultivar of the Odessa oblast is the prevalent resistant cultivar. In addition, cultivar Yaroslav Emmer is likely to be effective in the northern region; and foreign sources (Oro, Florence, Federation, and Triticum timopheevii), in the southern region. Very few sources of vertical resistance to common bunt are used for winter wheat breeding in Russia and Ukraine. The decrease in genetic diversity in favor of a few identical genes may cause adequate changes in the pathogen population and subsequent proliferation of the pathogen on the genetically identical substrate. A new interpretation of the resistance of line Lutescens 6028 as a source of new genes, Bt12 and Bt13, is suggested. Both genealogical and segregation analyses have shown that the genes determining the resistance of this line may be identical to those described earlier (Bt1, Bt3, Bt4, Bt6, and Bt7); and the high resistance of this line is determined by a combination of these genes.  相似文献   

16.
17.
Wheat genetic diversity trends during domestication and breeding   总被引:25,自引:0,他引:25  
It has been claimed that plant breeding reduces genetic diversity in elite germplasm which could seriously jeopardize the continued ability to improve crops. The main objective of this study was to examine the loss of genetic diversity in spring bread wheat during (1) its domestication, (2) the change from traditional landrace cultivars (LCs) to modern breeding varieties, and (3) 50 years of international breeding. We studied 253 CIMMYT or CIMMYT-related modern wheat cultivars, LCs, and Triticum tauschii accessions, the D-genome donor of wheat, with 90 simple sequence repeat (SSR) markers dispersed across the wheat genome. A loss of genetic diversity was observed from T. tauschii to the LCs, and from the LCs to the elite breeding germplasm. Wheats genetic diversity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. Our results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LCs and T. tauschii contain numerous unique alleles that were absent in modern spring bread wheat cultivars. Consequently, both the LCs and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germplasm.  相似文献   

18.
A substantial amount of between and within cultivar genetic variation was detected in all the 13 registered modern Canadian durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husn.) cultivars based upon amplified restriction fragment polymorphism (AFLP). Of the approximately 950 detected AFLP markers, only 89 were polymorphic, with 41 between cultivars whereas the remaining 48 showed polymorphism within at least one cultivar. The ancestry of Canadian durum wheat cultivars was traced back to 125 cultivars, selections, and breeding lines including 17 landraces. Mean pair-wise genetic distance based on the kinship coefficient was 0.76. On the other hand, AFLP-based mean pair-wise genetic distance was 0.40. Even though there was a large difference between the means of the two diversity measures, a moderate positive correlation (r=0.457, p<0.002) was detected between the two distance matrices. Cluster analysis with the entire AFLP data divided all cultivars into three major groups reflecting their breeding origins. One group contained ’Pelissier’ alone, which was a selection from a landrace introduced into the US from Algeria. On the other hand such groupings among cultivars were not evident when KIN was used for genetic diversity measures instead. The level of genetic variation among individuals within a cultivar at the breeders’ seed level was estimated based on an inter-haplotypic distance matrix derived from the AFLP data. We found that the level of genetic variation within the most-developed cultivars is fairly substantial despite rigorous selection pressure aimed at cultivar purity in breeding programs. Comparison of AFLP and pedigree-based genetic diversity estimates in crop species such as durum wheat can provide important information for plant improvement. Received: 26 January 2001 / Accepted: 31 May 2001  相似文献   

19.
The GRIS3.5 information analytical system of wheat genetic resources was used to track the possible ways of the transmission of fusarium head blight resistance from ancestors to progenies in extended pedigrees of 149 Russian and Ukrainian cultivaris of winter common wheat. Analysis of variance was performed for the coefficient of parentage computed for the cultivars under study and the putative sources of resistance and revealed that groups of resistant and susceptible cultivars differed in the distribution of contributions of the sources. In the resistant group, significant results were obtained for the contributions of Odesskaya 16, Gostianum 237, and Frontana. Pedigree analysis showed that fusarium head blight resistance was most commonly transmitted from Gostianum 237 through Odesskaya 16 and its derivatives. The landrace Khar'kovskaya probably served as a source of resistance in the case of Gostianum 237. In addition, the set of resistance sources included Kooperatorka, Hope, San Pastore, Triticum timopheevii Zhuk., and Secale cereale. Some well-known sources of fusarium head blight resistance varying in genetic determinants--Sumai 3, Wangshuibai, Wuhan 1, Nyubay (China), Nobeokabozukomugi, Shinchunaga (Japan), Arina (Switzerland), Fundulea-201R (Romania), and Renan (France)--have so far not being employed in breeding in Russia and provide an important reserve for breeding for resistance.  相似文献   

20.
Study of necrosis genotypes of 72 Russian cultivars of winter common wheat has confirmed a tendency towards “washing off“ of genotypes with the Ne1 gene. Fifty-six percent of cultivars have the genotype ne1ne1Ne2Ne2, and 44% have the genotype ne1ne1ne2ne2; i.e., they are free of hybrid necrosis genes. The results of the study indicate that the diversity of the original ancestors in the groups of cultivars with the ne1ne1Ne2Ne2 and ne1ne1ne2ne2 genotypes is almost the same. This determines the instability of the tendency towards a higher prevalence of the ne1ne1Ne2Ne2 genotype in recent years. The changes in the diversity of the original ancestors with time have shown an increase in the diversity index. These processes may somewhat decrease the rate of genetic erosion caused by the fact that the Ne1Ne1ne2ne2 falls out of breeding. The routes of transmission of necrosis gene alleles from ancestors to descendants have been traced using extended pedigrees, and this information has been used to identify the probable donors and sources of hybrid necrosis gene alleles. In most cases, the cultivars Mironovskaya 808 and Krasnodarskaya 39 are the putative sources of the Ne2 allele (60.6 and 27.3% of all cases, respectively). The old cultivar Gostianum 237 from Saratov oblast is the putative source of the Ne2 allele in the cultivar Krasnodarskaya 39. The cultivars Bezostaya 1 and Odesskaya 51 (whose pedigree also includes Bezostaya 1) are the donors of the recessive genotype ne1ne1ne2ne2 in 93.5% of cases. The old Ukrainian cultivar Ukrainka is the most frequent source of recessive alleles. The strength of the Ne2 allele has been estimated in 36 cultivars. The results indicate that modifier genes affect the expression of tumor necrosis genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号