首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In the literature, analysis of dynamic gait stability using the extrapolated center of mass concept is often an objective that assumes reproducible and symmetrical data. Here, we examined the validity of this assumption by analyzing subjects walking at different velocities. Eleven healthy young subjects walked on a treadmill at six different velocities (1.0-2.0m·s(-1)). Dynamic stability at touchdown of the left and right foot (10 gait trials for each body side) was investigated by using the margin of stability, determined as the difference between base of support and extrapolated center of mass. Dynamic stability parameters showed no significant differences (P>0.05) between gait trials, with a root mean square difference in margin of stability of less than 1.62cm. Correlation coefficients between trials were above 0.70 for all parameters, demonstrating that two gait trials are sufficient to obtain reproducible data. In more than 90% of the cases, the absolute symmetry index was below 8% with no relevant functional differences between body sides. We concluded that analyzing two gait trials for one body side is sufficient to determine representative characteristics of the components of dynamic stability in healthy young adults while walking on the treadmill at a wide range of velocities.  相似文献   

2.
Postural stability is essential to functional activities. This paper presents a new model of dynamic stability which takes into account both the equilibrium associated with the body position over the base of support (destabilizing force) and the effort the subject needs to produce to keep his/her centre of mass inside the base of support (stabilizing force). The ratio between these two forces (destabilizing over stabilizing) is calculated to provide an overall index of stability for an individual. Preliminary results from data collected during walking at preferred and maximal safe speed in four older adults (aged from 64 to 84 yr) showed that both forces are lower for subjects with reduced maximal gait speed. In addition, the stabilizing force increases by 2–3 times from preferred to maximal speed, while the destabilizing force barely changes with gait speed. Overall, the model through the index of stability attributes lower dynamic stability to subjects with lower maximal gait speed. These preliminary results call for larger-scale studies to pursue the development and validation of the model and its application to different functional tasks.  相似文献   

3.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

4.
High-speed, biplanar X-ray motion analysis, X-ray reconstruction of moving morphology (XROMM) and morphological studies have led to the identification of those traits which are considered to be crucial for the evolution of arboreal locomotion in chameleons. The loss of the extensive lateral undulation typical of reptiles needs to be compensated by high mobility in the shoulder girdle and a clear functional regionalization of the trunk. Large limb excursion angles provide a compliant gait and are made possible by a functional parasagittalization of fore- and hind limbs, at least temporarily. All these evolutionary novelties parallel very similar modifications in the evolution of the locomotor apparatus in therian mammals. We propose that the convergent “invention” of dynamic stability and a compliant gait seem to be responsible for the locomotor similarities between chameleons and mammals.  相似文献   

5.
Accidental falls are a leading cause of injury and death in the growing elderly population. Traumatic falls are frequent, costly, and debilitating. Control of balance during locomotion is critical for safe ambulation, but relatively little is known about the natural effect of aging on dynamic balance control. Samples of healthy young (n = 13) and elderly (n = 13) subjects were compared in the interactive measures of center of mass (COM) and center of pressure (COP) during level walking and obstacle crossing conditions. Obstacle heights were normalized to individual body height (2.5%, 5%, 10%, and 15%). Temporal-distance (T-D) variables of gait were also compared. Statistical analyses were conducted using a two-way ANOVA for subject group and obstacle height. T-D parameters were not significantly different between groups; nor were frontal plane COM and COP parameters. Significant age differences did exist for antero-posterior (A/P) motion of the COM (decreased motion in the elderly), and its relationship with the COP (reduced separation between the two variables in the elderly). Anterior COM velocities were also significantly lower in the elderly group. The results confirm the ability of healthy elderly adults to maintain dynamic balance control in the frontal plane during locomotion. Reduced A/P distances between the COM and COP indicate a conservative reduction of the mechanical load on joints of the supporting limb. This conservative strategy may be related to a reduction in muscle strength as it occurs in the natural aging process.  相似文献   

6.
This paper describes an investigation into the biomechanical effects of load carriage dynamics on human locomotion performance. A whole body, inverse dynamics gait model has been developed which uses only kinematic input data to define the gait cycle. To provide input data, three-dimensional gait measurements have been conducted to capture whole body motion while carrying a backpack. A nonlinear suspension model is employed to describe the backpack dynamics. The model parameters for a particular backpack system can be identified using a dynamic load carriage test-rig. Biomechanical assessments have been conducted based on combined gait and pack simulations. It was found that the backpack suspension stiffness and damping have little effect on human locomotion energetics. However, decreasing suspension stiffness offers important biomechanical advantages. The peak values of vertical pack force, acting on the trunk, and lower limb joint loads are all moderated. This would reduce shoulder strap pressures and the risk of injury when heavy loads are carried.  相似文献   

7.
A protocol prescribing leg motion during the swing phase is developed for the planar lateral leg spring model of locomotion. Inspired by experimental observations regarding insect leg function when running over rough terrain, the protocol prescribes the angular velocity of the swing-leg relative to the body in a feedforward manner, yielding natural variations in the leg touch-down angle in response to perturbations away from a periodic orbit. Analysis of the reduced order model reveals that periodic gait stability and robustness to external perturbations depends strongly upon the angular velocity of the leg at touch-down. While the leg angular velocity at touch-down provides control over gait stability and can be chosen to stabilize unstable gaits, the resulting basin of stability is much smaller than that observed for the original lateral leg spring model with a fixed leg touch-down angle. Comparisons to experimental leg angular velocity data for running cockroaches reveal that while the proposed protocol is qualitatively correct, smaller leg angular accelerations occur during the second half of the swing phase. Modifications made to the recirculation protocol to better match experimental observations yield large improvements in the basin of stability.  相似文献   

8.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

9.
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.  相似文献   

10.
Felines use their spinal column to increase their running speed at rapid locomotion performance. However, its motion profile behavior during fast gait locomotion has little attention. The goal of this study is to examine the relative spinal motion profile during two different galloping gait speeds. To understand this dynamic behavior trend, a dynamic motion of the feline animal (Felis catus domestica) was measured and analyzed by motion capture devices. Based on the experiments at two different galloping gaits, we observed a significant increase in speed (from 3.2 m.s-1 to 4.33 m.s-1) during the relative motion profile synchronization between the spinal (range: 118.86~ to 168.00~) and pelvic segments (range: 46.35~ to 91.13~) during the hindlimb stance phase (time interval: 0.495 s to 0.600 s). Based on this discovery, the relative angular speed profile was applied to understand the possibility that the role of the relative motion match during high speed locomotion generates bigger ground reaction force.  相似文献   

11.
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches. However, the functional significance of DS gait remains largely hypothetical. The study presented here tests hypotheses about the functional significance of DS gait by analyzing the gait mechanics of a primate that alternates between DS and lateral sequence (LS) gaits, Cebus apella. Kinematic and kinetic data were gathered from two subjects as they moved across both terrestrial and simulated arboreal substrates. These data were used to test four hypotheses: (1) locomotion on arboreal supports is associated with increased use of DS gait, (2) DS gait is associated with lower peak vertical substrate reaction forces than LS gait, (3) DS gait is associated with greater forelimb/hind limb differentiation in force magnitudes, and (4) DS gait offers increased stability. Our results indicate that animals preferred DS gait on the arboreal substrate, and LS gait while on the ground. Peak vertical substrate reaction forces showed a tendency to be lower in DS gait, but not consistently so. Pole ("arboreal") forces were lower than ground forces in DS gait, but not in LS gait. The preferred symmetrical gait on both substrates was a grounded run or amble, with the body supported by only one limb throughout most of the stride. During periods of bilateral support, the DS gait had predominantly diagonal support couplets. This benefit for stability on an arboreal substrate is potentially outweighed by overstriding, its associated ipsilateral limb interference in DS gait and hind foot positioning in front of the hand on untested territory. DS gait also did not result in an optimal anchoring position of the hind foot under the center of mass of the body at forelimb touchdown. In sum, the results are mixed regarding the superiority of DS gait in an arboreal setting. Consequently, the notion that DS gait is an ancestral adaptation of primates, conditioned by the selection demands of an arboreal environment, remains largely hypothetical.  相似文献   

12.
An actuated, lateral leg spring model is developed to investigate lateral plane locomotion dynamics and stability on inclines. A single actuation input, the force-free leg length, is varied in a feedforward fashion to explicitly and implicitly match prescribed lateral and fore-aft force profiles, respectively. Forward dynamic simulations incorporating the prescribed leg actuation are employed to identify periodic orbits for gaits in which the leg acts to either push the body away from or pull the body towards the foot placement point. Gait stability and robustness to external perturbation are found to vary significantly as a function of slope and velocity for each type of leg function. Results of these analyses suggest that the switch in leg function from pushing to pulling is governed by gait robustness, and occurs at increasing inclines for increasing velocities.  相似文献   

13.
The kinematics of the pelvis and thorax are important in gait studies since their movement patterns are closely related to gait efficiency and 'smoothness' of locomotion. The purpose of this study was to identify features of normal gait patterns for later comparisons with pathological and developmental gait patterns. A two camera SELSPOT system interfaced with an HP1000 minicomputer was used to obtain three-dimensional kinematic/temporal data for the pelvis and thorax. Data from treadmill walking of eight adults were used for within subject (at different speeds) analyses. The analyses revealed a very complex pattern with a set of breakpoints which was consistent over all subjects. Some features were invariant over a range of walking speeds although the total range of motion changed considerably.  相似文献   

14.
15.
This study aimed to determine if combined exercise intervention improves physical performance and gait joint-kinematics including the joint angle and dynamic range of motion (ROM) related to the risk of falling in community-dwelling elderly women. A 12-week combined exercise intervention program with extra emphasis on balance, muscle strength, and walking ability was designed to improve physical performance and gait. Twenty participants attended approximately two-hour exercise sessions twice weekly for 12 weeks. Participants underwent a physical performance battery, including static balance, sit and reach, whole body reaction time, 10 m obstacle walk, 10 m maximal walk, 30-second chair stand, to determine a physical performance score, and received quantitative gait kinematics measurements at baseline and in 12 weeks. Significant lower extremity strength improvement 13.5% (p<.001) was observed, which was accompanied by significant decreases in time of the 10 m obstacle walk (p<.05) and whole body reaction time (p<.001) in this study. However, no significant differences were seen for static balance and flexibility from baseline. For gait kinematics, in the mid-swing phase, knee and hip joint angle changed toward flexion (p<.01, p<.05, respectively). Ankle dynamic ROM significantly increased (p<.05) following exercise intervention. The plantar flexion angle of the ankle in the toe-off phase was increased significantly (p<.01). However, other gait parameters were not significantly different from baseline. These findings from the present investigation provide evidence of significant improvements in physical performance related to the risk factors of falling and safe gait strategy with a combined exercise intervention program in community-dwelling elderly women. The results suggest this exercise intervention could be an effective approach to ameliorate the risk factors for falls and to promote safer locomotion in elderly community-dwelling women.  相似文献   

16.
Modulation of limb dynamics in the swing phase of locomotion   总被引:6,自引:0,他引:6  
A method was presented for quantifying cat (Felis catus) hind limb dynamics during swing phase of locomotion using a two-link rigid body model of leg and paw, which highlighted the dynamic interactions between segments. Comprehensive determination was made of cat segment parameters necessary for dynamic analysis, and regression equations were formulated to predict the inertial parameters of any comparable cat. Modulations in muscle and non-muscle components of knee and ankle joint moments were examined at two treadmill speeds using three gaits: (a) pace-like walk and trot-like walk, at 1.0 ms-1, and (b) gallop, at 2.1 ms-1. Results showed that muscle and segment interactive moments significantly effected limb trajectories during swing. Some moment components were greater in galloping than in walking, but net joint maxima were not significantly different between speeds. Moment magnitudes typically were greater for pace-like walking than for trot-like walking at the same speed. Generally, across gaits, the net and muscle moments were in phase with the direction of distal joint motion, and these same moments were out of phase with proximal joint motion. Intersegmental dynamics were not modulated exclusively by speed of locomotion, but interactive moments were also influenced significantly by gait mode.  相似文献   

17.
Coating of solid dosage forms is an important unit operation in the pharmaceutical industry. In recent years, numerical simulations of drug manufacturing processes have been gaining interest as process analytical technology tools. The discrete element method (DEM) in particular is suitable to model tablet-coating processes. For the development of accurate simulations, information on the material properties of the tablets is required. In this study, the mechanical parameters Young’s modulus, coefficient of restitution (CoR), and coefficients of friction (CoF) of gastrointestinal therapeutic systems (GITS) and of active-coated GITS were measured experimentally. The dynamic angle of repose of these tablets in a drum coater was investigated to revise the CoF. The resulting values were used as input data in DEM simulations to compare simulation and experiment. A mean value of Young’s modulus of 31.9 MPa was determined by the uniaxial compression test. The CoR was found to be 0.78. For both tablet–steel and tablet–tablet friction, active-coated GITS showed a higher CoF compared with GITS. According to the values of the dynamic angle of repose, the CoF was adjusted to obtain consistent tablet motion in the simulation and in the experiment. On the basis of this experimental characterization, mechanical parameters are integrated into DEM simulation programs to perform numerical analysis of coating processes.  相似文献   

18.
Gait patterns of the elderly are often adjusted to accommodate for reduced function in the balance control system and a general reduction in skeletal muscle strength. Recent studies have demonstrated that measures related to motion of whole body center of mass (COM) can distinguish elderly individuals with balance impairment from healthy peers. Accurate COM estimation requires a multiple-segment anthropometric model, which may restrict its broad application in assessment of dynamic instability. Although temporal-distance measures and electromyography have been used in evaluation of overall gait function and determination of gait dysfunction, no studies have examined the use of gait measurements in predicting COM motion during gait. The purpose of this study was to demonstrate the effectiveness of an artificial neural network (ANN) model in mapping gait measurements onto COM motion in the frontal plane. Data from 40 subjects of varied age and balance impairment were entered into a 3-layer feed-forward model with back-propagated error correction. Bootstrap re-sampling was used to enhance the generalization accuracy of the model, using 20 re-sampling trials. The ANN model required minimal processing time (5 epochs, with 20 hidden units) and accurately mapped COM motion (R-values up to 0.89). As training proportion and number of hidden units increased, so did model accuracy. Overall, this model appears to be effective as a mapping tool for estimating balance control during locomotion. With easily obtained gait measures as input and a simple, computationally efficient architecture, the model may prove useful in clinical scenarios where electromyography equipment exists.  相似文献   

19.
This paper deals with a design approach of a gait training machine based on a quantitative gait analysis.The proposed training machine is composed of a body weight support device and a cable-driven parallel robot.This paper is focused on the cable-driven robot,which controls the pose of the lower limb through an orthosis placed on the patient's leg.The cable robot reproduces a normal gait movement through the motion of the orthosis.A motion capture system is used to perform the quantitative analysis of a normal gait,which will be used as an input to the inverse dynamic model of the cable robot.By means of an optimization algorithm,the optimal design parameters,which minimize the tensions in the cables,are determined.Two constraints are considered,i.e.,a non-negative tension in the cables at all times,and a free cable/end-effector collision.Once the optimal solution is computed,a power analysis is carried out in order to size the robot actuators.The proposed approach can be easily extended for the design study of a similar type of cable robots.  相似文献   

20.
Active control of lateral balance in human walking   总被引:17,自引:0,他引:17  
We measured variability of foot placement during gait to test whether lateral balance must be actively controlled against dynamic instability. The hypothesis was developed using a simple dynamical model that can walk down a slight incline with a periodic gait resembling that of humans. This gait is entirely passive except that it requires active control for a single unstable mode, confined mainly to lateral motion. An especially efficient means of controlling this instability is to adjust lateral foot placement. We hypothesized that similar active feedback control is performed by humans, with fore-aft dynamics stabilized either passively or by very low-level control. The model predicts that uncertainty within the active feedback loop should result in variability in foot placement that is larger laterally than fore-aft. In addition, loss of sensory information such as by closing the eyes should result in larger increases in lateral variability. The control model also predicts a slight coupling between step width and length. We tested 15 young normal human subjects and found that lateral variability was 79% larger than fore-aft variability with eyes open, and a larger increase in lateral variability (53% vs. 21%) with eyes closed, consistent with the model's predictions. We also found that the coupling between lateral and fore-aft foot placements was consistent with a value of 0.13 predicted by the control model. Our results imply that humans may harness passive dynamic properties of the limbs in the sagittal plane, but must provide significant active control in order to stabilize lateral motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号