首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5'-Methylthioadenosine phosphorylase from rat liver has been purified 112-fold. A molecular weight of 90 000 for the enzyme was estimated from gel filtration on Sephadex G-150. The Km for 5'-methylthioadenosine was 4.7 . 10(-7) M, while the Km for phosphate was 2 . 10(-4) M. The products of the reaction were isolated and identified as adenine and 5-methylthioribose 1-phosphate. In addition to 5'-methylthioadenosine the nucleoside analogues 5'-ethylthioadenosine and 5'-n-propylthioadenosine also served as substrates for the enzyme. The 7-deaza analogue 5'-methylthiotubercidin was found to be an inhibitor of the reaction, but was inactive as a substrate.  相似文献   

2.
An enzyme (5'-methylthioadenosine phosphorylase) that catalyzes the phosphorolytic cleavage of 5'-methylthioadenosine to 5-methylthioadenosine to 5-methylthioribose-1-phosphate and adenine was found in various rat tissues. Liver and lung had the highest enzyme activities and heart the lowest, most of the activity (greater than 90%) was recovered in soluble tissue fractions. The enzyme from rat lung was purified about 30-fold by pH treatment (NH4)2SO4 fractionation, and gel filtration. The enzyme did not require an added metal-ion for activity, and was not inhibited by EDTA. Many compounds were tested for their inhibitory effects; of these, ribose 1-phosphate, 2-deoxyribose 1-phosphate, fructose 1-phosphate, adenine and guanine were shown to inhibit. Kinetic patterns on reciprocal plots were linear as a function of the concentration of either 5'-methylthioadenosine or phosphate. More detailed kinetic studies suggested that the rat lung 5'-methylioadenosine phosphorylase catalyzes an equilibrium-ordered reaction, and that 5'-methylthioadenosine is the first substrate to bind and 5-methylthioribose-1-phosphate is the first product to be released.  相似文献   

3.
The gene for the extremely thermophilic and thermostable 5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus was expressed at a high level in Escherichia coli thus providing a basis for detailed structural and functional studies of the enzyme. The recombinant enzyme was purified to homogeneity by means of a heat treatment (10 min at 100 degrees C) and by a single affinity chromatography step. The appropriate expression vector and host strain were selected and the culture conditions were determined that would ensure a consistent yield of 6 mg of pure enzyme per liter of culture. The heterologously expressed enzyme is identical to the original S. solfataricus 5'-methylthioadenosine phosphorylase regarding molecular weight, substrate specificity, and the presence of intersubunit disulfide bonds. On the other hand, the recombinant 5'-methylthioadenosine phosphorylase is less thermophilic and thermostable than the S. solfataricus enzyme, since an incorrect positioning of disulfide bonds within the molecule generates structures less stable to thermal unfolding.  相似文献   

4.
A soluble enzyme preparation catalysing the release of adenine from 5'-methylthioadenosine was purified some 30-fold from extracts of the rat ventral prostate. This reaction was completely dependent on addition of inorganic phosphate ions to the assay medium. This absolute requirement for phosphate ions suggests a phosphorolytic cleavage mechanism. After acid treatment, the other product of the reaction appeared to be 5-methylthioribose. The actions of some other well-characterized enzymes of nucleoside metabolism of 5'-methylthioadenosine were also investigated; purified purine nucleoside phosphorylases from calf spleen and human erythrocytes did not attack 5'-methylthioadenosine. The role of 5'-methylthioadenosine in mammalian tissues is discussed.  相似文献   

5.
The molecular weight of delta-5-3-ketosteroid isomerase from Pseudomonas testosteroni was determined by means of sedimentation equilibrium and exclusion chromatography over a wide range of enzyme concentrations in 0.2 M potassium phosphate buffer, pH 7.0. In addition, the sedimentation constant of the enzyme was determinded over an extended range of concentrations. The enzyme was found to have a molecular weight of 26,000 plus or equal to 1,000, suggesting that it is a dimer of identical or similar 13,400 molecular weight polypeptide chains. In the ultracentrifuge this dimeric species was found to undergo aggregation at enzyme concentrations above 2 mg per ml and dissociation at enzyme concentrations below 0.05 mg per ml. Exclusion chromatography studies indicate that under the conditions of chromatography the oligomeric enzyme is partially dissociated at enzyme concentrations in the range 0.2 to 0.002 mug per ml. These results suggest that under conditions of enzyme assay in 0.2 M potassium phosphate buffer, pH 7.0, isomerase is in a monomeric state of aggregation.  相似文献   

6.
Monoamine oxidase from pig liver has been isolated and purified approximately three hundred-fold. This enzyme has a molecular weight of 1,200,000, is highly polymeric, and contains subunits of molecular weight 146,000, as determined by Sephadex chromatography. The apparent Km at 25°C is 1.28 × 10?6 M at pH 9.0 (0.05 M glycine) and 1.74 × 10?5 M at pH 7.2 (0.2 M phosphate) using benzylamine as a substrate. This enzyme contains approximately 8 copper(II) ions per 1,200,000 molecular weight.  相似文献   

7.
5'-Methylthioadenosine phosphorylase was purified approx. 340-fold from human prostate by using affinity chromatography by Hg-coupled Sepharose. The enzyme, responsible for the breakdown of 5'-methylthioadenosine into adenine and methylthioribose 1-phosphate, was partially characterized. The apparent Km for 5'-methylthioadenosine is 25 microM. It is activated by thiols and shows an absolute requirement for phosphate ions. New analogues of 5'-methylthioadenosine were prepared and their activity as substrates or inhibitors of the reaction was investigated. The replacement of the 6-amino group of the adenine moiety by a hydroxy group, as well as the replacement of N-7 by a methinic radical, resulted in an almost complete loss of activity. Otherwise the replacement of sulphur by selenium, as well as that of the methyl group by an ethyl one, is compatible with the activity as substrate. The positively charged sulphonium group also prevents catalytic interaction with the enzyme. The inhibitory effect of 5'-methylthiotubercidin (competitive) and 5'-dimethylthioadenosine sulphonium salt (non-competitive) was also demonstrated. The reported results suggest three binding sites between the substrate and the enzyme.  相似文献   

8.
Pyridoxamine (pyridoxine) 5'-phosphate oxidase (EC 1.4.3.5) has been purified 2000-fold from rabbit liver. The enzyme preparation migrates as a single protein and activity band on analytical disc gels containing 4,7, or 9 percent acrylamide, and as a single protein band on sodium dodecyl sulfate acrylamide gels. The oxidase is, therefore, homogeneous by these criteria. The pure enzyme catalyzes the following reactions in the presence of FMN: (See journal for formula). These activities copurify in the ratio of 1:1:1. Apparent K-m values are 10 muM for pyridoxamine-P, 30 muM for pyridoxine-P, and 40 nM for FMN. Apparent K-m values for N-(phosphopyridoxyl)amines range from 3.1 times 10-5 M to 1.6 times 10-3 M. The dissociation constant for FMN binding, determined by quenching of protein fluorescence, is 20 nM. The pH optima for all three types of substrates are broad, with maxima near pH 9. The pH dependence of FMN binding, measured by quenching of flavin fluorescence, has the same shape as the substrate activity profile. The holoenzyme has absorption maxima red-shifted from those of FMN to 380 nm and 448 nm, and exhibits spectral changes typical of flavoproteins upon reduction with dithionite. Its oxidation-reduction potential at pH 7 in phosphate buffer is -0.131 volt. The native enzyme has a molecular weight of 54,000 and is made up of two possibly identical polypeptide chains with molecular weights of 27,000. The applicability of proposed mechanisms of flavin catalysis to this flavoprotein is discussed.  相似文献   

9.
We report herein the first molecular characterization of 5'-deoxy-5'-methylthio-adenosine phosphorylase II from Sulfolobus solfataricus (SsMTAPII). The isolated gene of SsMTAPII was overexpressed in Escherichia coli BL21. Purified recombinant SsMTAPII is a homohexamer of 180 kDa with an extremely low Km (0.7 microm) for 5'-deoxy-5'-methylthioadenosine. The enzyme is highly thermophilic with an optimum temperature of 120 degrees C and extremely thermostable with an apparent Tm of 112 degrees C that increases in the presence of substrates. The enzyme is characterized by high kinetic stability and remarkable SDS resistance and is also resistant to guanidinium chloride-induced unfolding with a transition midpoint of 3.3 m after 22-h incubation. Limited proteolysis experiments indicated that the only one proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. Moreover, the binding of 5'-deoxy-5'-methylthioadenosine induces a conformational transition that protected the enzyme against protease inactivation. By site-directed mutagenesis we demonstrated that Cys259, Cys261 and Cys262 play an important role in the enzyme stability since the mutants C259S/C261S and C262S show thermophilicity and thermostability features significantly lower than those of the wild-type enzyme. In order to get insight into the physiological role of SsMTAPII a comparative kinetic analysis with the homologous 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) was carried out. Finally, the alignment of the protein sequence of SsMTAPII with those of SsMTAP and human 5'-deoxy-5'-methylthioadenosine phosphorylase (hMTAP) shows several key residue changes that may account why SsMTAPII, unlike hMTAP, is able to recognize adenosine as substrate.  相似文献   

10.
A procedure is presented for the rapid purification of a 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from potato tubers, involving ammonium sulphate fractionation and chromatography on phosphocellulose, DEAE-cellulose and Sephadex G-75. Application of this procedure results in a 6000-fold purification of the 5'-nucleotidase and the final preparations are virtually homogeneous, yielding only one protein band on electrophorsis in polyacrylamide gels in non-dissociating or dissociating conditions. The 5'-nucleotidase has a molecular weight of 50 000 from gel filtration experiments. Sodium dodecylsulphate-polyacrylamide gel electrophoresis of the purified 5'-nucleotidase reveals one major band of molecular weight 25 000. The 5'-nucleotidase is competitively inhibited by cyclic nucleotides, having micromolar Ki values for cyclic AMP and cyclic GMP at pH 5.0 and pH 8.0. The enzyme has a pH optimum of 5.0 with 5'-GMP as substrate. While 5'-AMP and 3'-AMP are hydrolyzed at comparable rates at pH 5.0, at pH 8.0 the rate of hydrolysis of 3'-AMP is only 4% of that with 5'-AMP. ADP, ATP and 2'-AMP are very poor substrates for the enzyme. The nucleotidase has micromolar Km values for nucleoside 5'-monophosphates other than 5'-NMP. A wide variety of divalent cations activate the 5'-nucleotidase.  相似文献   

11.
5'-Methylthioadenosine phosphorylase has been purified approximately 340-fold in 20% yield from human prostate: the use of affinity chromatography by Sepharose-Hg has been found particularly advantageous. The enzyme has been partially characterized and an apparent Km of 2.5 x 10(-5) M has been calculated for 5'-methylthioadenosine. The reaction is activated by thiols and shows an absolute requirement for phosphate ions.  相似文献   

12.
A highly active glycogen phosphorylase was purified from Neurospora crassa by polyethylene glycol fractionation at pH 6.16 combined with standard techniques (chromatography and salt fractionation). The final preparation had a specific activity of 65 +/- 5 U/mg of protein (synthetic direction, pH 6.1, 30 degrees C) and was homogeneous by the criteria of gel electrophoresis, amino-terminal analysis, gel filtration, and double immunodiffusion in two dimensions. The enzyme had a native molecular weight of 180,000 +/- 10,000 (by calibrated gel filtration and gel electrophoresis) and a subunit molecular weight of 90,000 +/- 5,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Each subunit contained one molecule of pyridoxal phosphate. No phosphoserine or phosphothreonine was detected by amino acid analysis optimized for phosphoamino acid detection. The enzyme isolated from cells grown on high-specific-activity 32Pi (as sole source of phosphorus) contained one atom of 32P per subunit. All the radioactivity was removed by procedures that removed pyridoxal phosphate. Thus, the enzyme could not be classified as an a type (phosphorylated, active in the absence of a cofactor) or as a b type (non-phosphorylated, inactive in the absence of a cofactor). The level of phosphorylase was markedly increased in mycelium taken from older cultures in which the carbon source (glucose or sucrose) had been depleted. The polyethylene glycol fractionation scheme applied at pH 7.5 to mycelial extracts of younger cultures (taken before depletion of the sugar) resulted in co-purification of glycogen phosphorylase and glycogen synthetase.  相似文献   

13.
Phosphoglycolate phosphatase (EC 3.1.3.18) was purified 1500-fold from field-grown tobacco leaves by acetone fractionation, DEAE-cellulose and molecular sieve chromatography, and preparative polyacrylamide gel electrophoresis. Preparations were judged 90 to 95% homogeneous by chromatography on DEAE-cellulose, polyacrylamide gel electrophoresis, and by isoelectric focusing. The highest specific activity obtained was 468 mumol of phosphate released/min/mg of protein. The native protein has a molecular weight of 80,500 by Ferguson plot analysis and 86,300 by sedimentation velocity on sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gels gave a molecular weight of 20,700, indicating the P-glycolate phosphatase is a tetramer with identical or near identical subunits. The enzyme, freshly purified or in crude homogenates, had a pI of 3.8 to 3.9 pH units by isoelectric focusing. Phosphosphoglycolate phosphatase from spinach leaves has a molecular weight of 93,000 and, unlike the enzyme from tobacco leaves, it is extremely unstable after DEAE-cellulose chromatography and is inactivated by lipase (EC 3.1.1.3). The phosphatase from both plants was stabilized by the addition of citrate or isocitrate in the buffers. Ribose 5-phosphate is a competitive inhibitor of phosphoglycolate phosphatase at physiological concentration, while other phosphate esters of the photosynthetic carbon cycle were without effect.  相似文献   

14.
The purification of ribose 5 phosphate isomerase from tobaccoleaves is described. The procedure used extends over six stepsto a 14.4% yield of a homogeneous protein purified 288-foldfrom the crude extract. The enzyme has a molecular weight of54,000 daltons. The pH optimum (8.2), Km for ribose 5 phosphate(1.6x10–3M), amino acid composition and isoelectric point(pI = 5.13) have been determined. Comparison of these propertieswith those of yeast and animal isomerases is discussed. (Received March 8, 1976; )  相似文献   

15.
Spermine synthase, a propylamine transferase, which catalyses the biosynthesis of spermine from S-methyladenosylhomocystemine and spermidine has been purified to an apparent homogeneity (about 6000-fold) from bovine brain using spermine-Sepharose affinity chromatography. The enzyme preparation was free from S-adenosylmethionine decarboxylase and spermidine synthase activities. The molecular Stokes radius of the enzyme was calculated to be 4.16 nm. The enzyme has an apparent molecular weight of approximately 88 000, composing of two subunits of equal size. The enzyme showed a broad pH optimum between 7.0 and 8.0 and an acidic isoelectric point at pH 5.10. The apparent Km values for S-methyladenosylhomocysteamine was 0.6 microM and about 60 microM for spermidine. The enzyme showed strict specificity to spermidine as the propylamine acceptor. Both the reaction products, spermine and 5'-methylthioadenosine inhibited the enzyme activity, methylthioadenosine being a powerful competitive inhibitor with respect to S-methyladenosylhomocysteamine (Ki value of about 0.3 microM). Putrescine also inhibited competitively with respect to spermidine (Ki value of about 1.7 mM). Spermine synthase had no requirements for metal or other cofactors.  相似文献   

16.
1. The high-activity form of aminolaevulinate synthetase has been prepared from extracts of semi-anaerobically grown cells of Rhodopseudomonas spheroides, which were allowed to become activated in air. Specific activity was 130 000--170 000 nmol of aminolaevulinate/h per mg of protein at 37 degree C. 2. Enzyme fraction Ia prepared on DEAE-Sephadex was a mixture of four active enzymes, pI5.55, 5.45, 5.35 and 5.2, when prepared in either Tris or phosphate buffers and when extracts were activated by air or by cystine trisulphide. 3. The enzyme was further purified by preparative polyacrylamide-gel electrophoresis in imidazole/veronal buffer, pH 7.6, followed by gel filtration on Sephadex G-100 and concentration with DEAE-Sephadex. 4. The most active enzyme, pI 5.55, ran as a single protein band, mol.wt. 49 000, in sodium dodecyl sulphate and 2-mercaptoethanol. The apparent molecular weight under non-denaturing conditions was 62 000--68 000 on Sephadex G-100 or G-200, pH 7.5, and on polyacrylamide-gel electrophoresis, pH 8.5, at enzyme concentrations below 10 000 units/ml, i.e. less than 60 microgram of protein/ml, and the enzyme was mainly monomeric. 5. The enzyme was homogeneous by gel disc electrophoresis at pH 8.9 and 7.6, but a slightly more diffuse band of protein was obtained during electrophoresis in glycine buffer, pH 7.4. 6. Enzyme samples possessed an intrinsic yellow fluorescence when viewed under u.v. light and this fluorescence coincided exactly with enzymic activity on gel electrophoresis. Fluorescence maxima were 420 nm (excitation) and 495 nm (emission). 7. Radioactive 35S-labelled enzyme had 14 atoms of sulphur/mol of protein (or/40 leucine residues) of which 5--6 residues were cyst(e)ine and 8--9 residues were methionine. 8. Mo carbohydrate was detected apart from glucose, which prevented accurate determination of tryptophan with methanesulphonic acid and tryptamine.  相似文献   

17.
菠菜叶片蔗糖磷酸合成酶的纯化   总被引:1,自引:0,他引:1  
经硫酸铵分部沉淀,DEAE-纤维素(DE 52),Sepharose 6B和 AH—4B连续三次柱层析,得到纯化88倍电泳均一的菠菜叶片蔗糖磷酸合成酶。电泳分析该酶分子量为490 kD,是由八个分子量为60 kD的相同亚基组成的寡聚体,等电点为PI=4.l,其最适pH值为6.9。  相似文献   

18.
The glutamine synthetase from Bacillus licheniformis A5 was purified by using a combination of polyethylene glycol precipitation and chromatography on Bio-Gel A 1.5m. The resulting preparation was judged to be homogeneous by the criteria of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, equilibrium analytical ultracentrifugation, and electron microscopic analysis. The enzyme is a dodecamer with a molecular weight of approximately 616,000, and its subunit molecular weight is 51,000. Under optimal assay conditions (pH 6.6, 37 degrees C) apparent Km values for glutamate, ammonia, and manganese.adenosine 5'-triphosphate (1:1 ratio) were 3.6, 0.4, and 0.9 mM, respectively. Glutamine synthetase activity was inhibited approximately 50% by the addition of 5 mM glutamine, alanine, glycine, serine, alpha-ketoglutarate, carbamyl phosphate, adenosine 5'-diphosphate, or inosine 5'-triphosphate to the standard glutamine synthetase assay system, whereas 5 mM adenosine 5'-monophosphate or pyrophosphate caused approximately 90% inhibition of enzyme activity. Phosphorylribosyl pyrophosphate at 5 mM enhanced activity approximately 60%. We were unable to detect any physical or kinetic differences in the properties of the enzyme when it was purified from cells grown in the presence of ammonia or nitrate as sole nitrogen source. The data indicate that B. licheniformis A5 contains one species of glutamine synthetase whose catalytic activity is not regulated by a covalent modification system.  相似文献   

19.
4-Nitrophenyl and 2-napthyl monoesters of phenylphosphonic acid have been synthesized, and an enzyme catalyzing their hydrolysis was resolved from alkaline phosphatase of a commerical calf intestinal alkaline phosphatase preparation by extensive ion-exchange chromatography, chromatography on L-phenylalanyl-Sepharose with a decreasing gradient of (NH4) 2SO4, and gel filtration. Detergent-solubilized enzyme from fresh bovine intestine was purified after (NH4)2SO4 fractionation by the same technique. The purified enzyme is homogeneous by polyacrylamide gel electrophoresis and sedimentation equilibrium centrifugation. It has a molecular weight of 108,000, contains approximately 21% carbohydrate, and has an amino acid composition considerably different from that reported from alkaline phosphatase from the same tissue. The homogeneous intestinal enzyme, an efficient catalyst of phosphonate ester hydoolysis but not of phosphate monoester hydrolysis, was identified as a 5'-nucleotide phosphodiesterase by its ability to hydrolyze 4-nitrophenyl esters of 5'-TMP but not of 3'-TMP. Also consistent with this identification was the ability of the enzyme to hydrolyze 5'-ATP to 5'-AMP and PPi, NAD+ to 5'-AMP and NMN, TpT to 5'-TMP and thymidine, pApApApA to 5'-AMP, and only the single-stranded portion of tRNA from the 3'-OH end. Snake venom 5'-nucleotide phosphodiesterase also hydrolyzes phosphonate esters, but 3'-nucleotide phosphodiesterase of spleen and cyclic 3',5'-AMP phosphodiesterase do not. Thus, types of phosphodiesterases can be conveniently distinguished by their ability to hydrolyze phosphonate esters. As substrates for 5'-nucleotide phosphodiesterases, phosphonate esters are preferable to the more conventional esters of nucleotides and bis(4-nitrophenyl) phosphate because of their superior stability and ease of synthesis. Furthermore, the rate of hydrolysis of phosphonate esters under saturating conditions is greater than that of the conventional substrates. At substrate concentrations of 1 mM the rates of hydrolysis of phosphonate esters and of nucleotide esters are comparable and both superior to that of bis(4-nitrophenyl) phosphate.  相似文献   

20.
The main molecular and catalytic properties of an acetanilide-hydrolyzing enzyme from Pseudomonas acidovorans AE 1, purified to a homogeneous state, were investigated. The molecular weight was 57 500 as determined by gel filtration and 55 300 as computed from the amino acid composition. By polyacrylamide gel electrophoresis in dodecylsulfate a polypeptide chain weight of 56 700 was obtained. Based on the reaction of the highly purufied enzyme with diethyl-4-nitrophenyl phosphate an equivalent weight of approximately 59 100 was found. From these results it was concluded that the enzyme consists of a single polypeptide chain and contains one active site per molecule. The enzyme hydrolyzed esters as well as certain aromatic amides. It also catalysed the transfer of acetyl groups to phenetidine yielding phenacetin. The activities towards aliphatic esters were much smaller. The enzyme was stable at pH values ranging from 7 to 9 and its pH-optimum was about 10. It was strongly inhibited by organophosphorous compounds, like diethyl-4-nitrophenyl phosphate or diisopropylphosphorofluoridate, as well as by physostigmine sulfate and -SH-blocking reagents, like HgCl-2 or 4-chloromercuribenzoic acid. o-Nitrophenol caused a competitive inhibition and phenetidine an uncompetitive inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号