首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured and propagated smooth muscle cells contain adenylate cyclase (AC) responsive to catecholamines and their analogues. Isoproterenol and zinterol were the most effective stimulants of AC activity with EC50 = 8.5 X 10(-8)M. They were followed by epinephrine, phenylephrine and norepinephrine (EC50 = 7.5 X 10(-7)M, 6.5 X 10(-6)M and 4 X 10(-6)M, respectively). When the selective antagonists for beta 1 and beta 2 receptors (beta 1-type practolol and atenolol, beta 1/beta 2-type propranolol and beta 2-type butoxamine) were tested against isoproterenol, epinephrine and norepinephrine stimulation of AC activity, the beta 1 in contrast to beta 2 antagonists were found ineffective. The alpha-blockers (phentolamine alpha 1/alpha 2-type antagonists) and yohimbine (alpha 2-type antagonist) alone or in the presence of propranolol did not significantly inhibit the catecholamine-induced enhancement of cAMP formation. On the other hand, prazosine (alpha 1-type antagonist) blocked the stimulatory effect of epinephrine and norepinephrine on AC system. Similarly, the alpha 2-agonist, clonidine, did not affect the catecholamines' stimulated AC activity while alpha 1 agonist, phenylephrine, induced an additive enhancement of norepinephrine production of cAMP. The findings of beta-2- and alpha-1-type adrenergic receptors in the cultured cerebrovascular smooth muscle provide additional support for the implicated involvement of adrenergic innervation in the regulation of cerebral blood flow and/or systemic blood pressure.  相似文献   

2.
Adrenergic versus VIPergic control of cyclic AMP in human colonic crypts   总被引:2,自引:0,他引:2  
N Boige  A Munck  M Laburthe 《Peptides》1984,5(2):379-383
The actions of catecholamines on VIP-induced cyclic AMP is studied in human colon. We show that: (1) Epinephrine in the 10(-7)-10(-3) M concentration range (ED50 = 11.10(-6) M) inhibits VIP-induced cyclic AMP rise in isolated colonic epithelial cells; the maximal inhibition reaches 30% of VIP effect; epinephrine alters the efficacy of the peptide and does not modify its potency; epinephrine also reduces the basal cyclic AMP level. (2) The inhibition is found with other alpha adrenergic agonists with the order of potencies epinephrine greater than norepinephrine greater than phenylephrine. Clonidine has a poor intrinsic activity but antagonizes the action of epinephrine. (3) The inhibition of VIP action by epinephrine is reversed by the alpha antagonists dihydroergotamine, phentolamine and the alpha 2 antagonist yohimbine, while unaffected by the beta antagonist propranolol and the alpha 1 antagonist prazosin, (4) Epinephrine inhibits VIP-stimulated adenylate cyclase activity in preparations of colonic plasma membranes. Thus catecholamines exert through an alpha 2 adrenoreceptor a negative control on basal and VIP-stimulated cyclic AMP formation in human colon. We suggest that colonic cyclic AMP metabolism undergoes a dual control: VIPergic, activator and adrenergic, inhibitor.  相似文献   

3.
Adrenergic-stimulated glycogenolysis (estimated as glucose output) was determined in hepatocytes from 7, 14, 20, and 24 mo old male Fischer 344 rats. Glucose output in response to the beta adrenergic agonist isoproterenol was minimal at 7 mo but increased progressively with increasing age. At all ages the isoproterenol response was concentration dependent and was inhibited by the beta adrenergic antagonist propranolol. Stimulation of glucose output by the mixed alpha-beta agonist epinephrine also increased between 7 and 24 mo. Glycogenolytic responses to alpha agonist (assessed in the presence of epinephrine and excess beta antagonist), glucagon, and forskolin did not increase substantially with age and at 24 mo were less than the response to beta agonist. In hepatocyte homogenates adenylate cyclase activation by beta agonist but not glucagon and forskolin increased between 7 and 24 mo. These results suggest that adrenergic stimulation of glycogenolysis, which in young adult male rats is generally attributed to alpha adrenergic-mediated processes, becomes mediated predominantly by beta adrenergic-responsive adenylate cyclase during post-maturational aging.  相似文献   

4.
The adrenergic inhibition of lipogenesis and stimulation of lipolysis in the avian has been examined using chicken hepatocytes and adipose tissue explants in vitro. Lipogenesis was inhibited by adrenergic agonists: epinephrine (alpha + beta) greater than isoproterenol (beta 1/beta 2) greater than norepinephrine (alpha 1/alpha 2, beta 1) greater than metaproterenol (beta 2), phenylephrine (alpha 1). Dobutamine (beta 1 agonist) and dopamine (dopaminergic agonist) did not significantly affect [14C]acetate incorporation into lipid, while clonidine and para-aminoclonidine (alpha 2 agonists) were slightly stimulatory. Lipolysis in young and adult chicken adipose tissue was stimulated by epinephrine, isoproterenol, phenylephrine, dobutamine and metaproterenol, but was inhibited by clonidine and para-aminoclonidine. Both the antilipogenic and lipolytic effects of epinephrine were partially blocked by phentolamine (alpha 1 = alpha 2 antagonist) or propranolol (beta 1 = beta 2 antagonist), but completely inhibited by phentolamine and propranolol administered together.  相似文献   

5.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

6.
(-)-Norepinephrine and other catecholamines inhibit basal and prostaglandin E1-stimulated adenylate cyclase activities by 35 to 60% in homogenates of NG108-15 neuroblastoma x gloma hybrid cells and markedly reduce adenosine 3'35:'-monophosphate levels of intact cells, but do not affect guanosine 3':5'-monophosphate levels. The specificity of the NG108-15 receptor for ligands is that of an alpha receptor, possibly a presynaptic alpha 2 receptor. The inhibition of adenylate cyclase by norepinephrine is reversed by alpha receptor antagonists such as dihydroergotamine or phentolamine, but not by the beta receptor antagonist propranolol. The effect of norepinephrine on adenylate cyclase activity initially is dependent on GTP; half-maximal inhibition of enzyme activity by norepinephrine is obtained with 0.2 micron GTP. The inhibition of adenylate cyclase activity by norepinephrine is reduced by 10 mM NaF and is abolished by 0.05 mM guanyl-5'-yl imidodiphosphate. Inhibitions of NG108-15 adenylate cyclase mediated by alpha receptors, opiate receptors, and muscarinic acetylcholine receptors are not additive; this suggests that the three species of receptors can be functionally coupled to the same adenylate cyclase molecules or molecules regulating the enzyme.  相似文献   

7.
An adenosine-sensitive adenylate cyclase has been characterized in cultured mesenteric artery smooth muscle cells. N-Ethylcarboxamide-adenosine (NECA), N-Methylcarboxamide-adenosine (MECA), L-N6-phenylisopropyladenosine (PIA) and 2-chloroadenosine (2-cl-Ado) all stimulated adenylate cyclase in a concentration dependent manner. NECA was the most potent analog (EC50, 1 microM), whereas PIA (EC50, 15 microM), 2-Cl-Ado (EC50, 15 microM) and MECA (EC50, 24 microM), were less potent and had efficacies relative to NECA of 0.61, 0.61 and 0.65, respectively. Adenosine showed a biphasic effect: stimulation at lower concentrations and inhibition at higher concentrations, whereas 2' deoxyadenosine only inhibited adenylate cyclase activity. The stimulatory effect of NECA on adenylate cyclase was dependent on metal ion concentration and was blocked by 3-isobutyl-l-methylxanthine (IBMX) and 8-phenyltheophylline (8-PT). Adenylate cyclase from these cultured cells was also stimulated by other agonists such as epinephrine, norepinephrine, prostaglandins, dopamine, NaF and forskolin. The stimulation of adenylate cyclase by isoproterenol, epinephrine and norepinephrine was blocked by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol and flupentixol all inhibited dopamine-stimulated adenylate cyclase activity. In addition, the stimulation by an optimal concentration of PIA was additive or almost additive with maximal stimulation caused by catecholamines and prostaglandins. These data indicate the presence of adenosine (Stimulatory "Ra"), catecholamine and prostaglandin receptors in mesenteric artery smooth muscle cells and suggest that these agents may exert their physiological actions through their interaction with their respective receptors coupled to adenylate cyclase.  相似文献   

8.
The mixed adrenergic agonist epinephrine, at a 10 microM concentration, stimulated cyclic AMP production and glycerol release in the epididymal adipose tissue of ob/ob male mice. These effects when tested, respectively, after 7 min in the presence and after 60 min in the absence of theophylline were, however, 7- and 5-fold lower than in lean controls. The alpha-adrenergic blocker phentolamine and adenosine deaminase (which destroys extracellular adenosine) did not restore a normal lipolytic response to epinephrine in the adipose tissue of ob/ob mice. These data provide indirect evidence against a hyperactive mechanism in the coupling of alpha-adrenergic receptors and adenosine receptors to Ni, the guanine nucleotide-binding inhibitory component of adenylate cyclase, as the cause of reduced lipolysis in the adipose tissue of ob/ob mice.  相似文献   

9.
1. Injection of epinephrine induced in skin a decrease in the level of glucose-1,6-bisphosphate (Glc-1,6-P2), which was accompanied by correlated changes in the activities of several enzymes which are modulated by this regulator. 2. These effects were blocked by the alpha adrenergic blocker phentolamine, in contrast to muscle where the hormone increases Glc-1,6-P2, acting through beta receptors. 3. The changes in the enzymes' activities, as well as in glycogen and lactate content induced by epinephrine, reveal that the hormone causes, in skin, a stimulation of glycogenolysis and glycolysis, as well as an acceleration of pentose phosphate pathway. 4. The reduction in glycogen content induced by epinephrine, was blocked by the beta adrenergic blocker propranolol, whereas the hormone's effects on the other processes were mainly mediated through alpha receptors.  相似文献   

10.
Several new clonidine analogs were synthesized and their ability to inhibit [3H]phentolamine binding to human platelet alpha 2-adrenergic receptors was tested. The order of potency and calculated dissociation constants for clonidine and its analogs were as follows: clonidine (0.020 +/- 0.005 microM) greater than p-aminoclonidine (0.100 +/- 0.010 microM) greater than hydroxy-phenacetyl-aminoclonidine (0.20 +/- 0.03 microM) greater than p-dansyl clonidine (1.00 +/- 0.20 microM) greater than t-boc-tyrosine clonidine (1.80 +/- 0.60 microM). Thus, p-amino substitution reduces alpha 2-adrenergic affinity in the platelet system. The effects of clonidine and its p-amino analogs on platelet adenylate cyclase were also evaluated. This enzyme is inhibited by epinephrine acting via alpha 2-adrenergic receptors. Both clonidine and p-aminoclonidine cause slight inhibition of basal adenylate cyclase and reverse the inhibition induced by epinephrine. These observations indicate that clonidine is a partial agonist for platelet alpha 2-adrenergic receptors.  相似文献   

11.
Forskolin at 10 muM caused a 100-fold increase in the intracellular concentration of cyclic AMP and a 6-fold increase in glycerol release in the human adipocyte. These responses are comparable to those prompted by 10 muM isoproterenol. The effects of forskolin on cyclic AMP and lipolysis were dose-dependent. Alpha-2 adrenergic activation, achieved with 10 muM epinephrine and 30 muM propranolol, significantly inhibited forskolin-stimulated cyclic AMP accumulation and glycerol release, shifting the dose-response curves to the right. Forskolin at 10 muM caused a 4.5-fold increase in the adenylate cyclase activity of human adipocyte membranes. When either isoproterenol or epinephrine (0.1 mM) was combined with forskolin, the magnitude of response was substantially greater than the sum of responses achieved by each agent incubated alone.  相似文献   

12.
1. Renal tubular membranes from rat kidneys were prepared, and adenylate cyclase activity was measured under basal conditions, after stimulation by NaF or salmon calcitonin. Apparent Km value of the enzyme for hormone-linked receptor was close to 1 x 10(-8) M. 2. The system was sensitive to temperature and pH. pH was found to act both on affinity for salmon calcitonin-linked receptor and maximum stimulation, suggesting an effect of pH on hormone-receptor binding and on a subsequent step. 3. KCl was without effect areas whereas CoCl and CaCl2 above 100 muM and MnCl2 above 1 muM inhibited F- -and salmon calcitonin-sensitive adenylate cyclase activities. The Ca2+ inhibition of the response reflected a fall in maximum stimulation and not a loss of affinity of salmon calcitonin-linked receptor for the enzyme. 4. The measurement of salmon calcitonin-sensitive adenylate cyclase activity as a function of ATP concentration showed that the hormone increases the maximum velocity of the adenylate cyclase. GTP, ITP and XTP at 200 muM did not modify basal, salmon calcitonin- and parathyroid hormone-sensitive adenylate cyclase activities. 5. Basal, salmon calcitonin- and F- -sensitive adenylate cyclase activities decreased at Mg2+ concentrations below 10 mM. High concentrations of Mg2+ (100 mM) led to an inhibition of the F- -stimulated enzyme. 6. Salmon calcitonin-linked receptor had a greater affinity for adenylate cyclase than human or porcine calcitonin-linked receptors. There was no additive effect of these three calcitonin peptides whereas parathyroid hormone added to salmon calcitonin increased adenylate cyclase activity, thus showing that both hormones bound to different membrane receptors. Human calcitonin fragments had no effect on adenylate cyclase activity. 7. Salmon calcitonin-stimulated adenylate cyclase activity decreased with the preincubation time. This was due to progressive degradation of the hormone and not to the rate of binding to membrane receptors.  相似文献   

13.
Studies of rat skeletal glycogen metabolism carried out in a perfused hindlimb system indicated that epinephrine activates phosphorylase via the cascade of phosphorylation reactions classically linked to the beta-adrenergic receptor/adenylate cyclase system. The beta blocker propranolol completely blocked the effects of epinephrine on cAMP, cAMP-dependent protein kinase, phosphorylase, and glucose-6-P, whereas the alpha blocker phentolamine was totally ineffective. Omission of glucose from the perfusion medium did not modify the effects of epinephrine. Glycogen synthase activity in control perfused and nonperfused muscle was largely glucose-6-P-dependent (-glucose-6-P/+glucose-6-P activity ratios of 0.1 and 0.2, respectively). Epinephrine perfusion caused a small decrease in the enzyme's activity ratio (0.1 to 0.05) and a large increase in its Ka for glucose-6-P (0.3 to 1.5 mM). This increase in glucose-6-P dependency correlated in time with protein kinase activation and was totally blocked by propranolol and unaffected by phentolamine. Comparison of the kinetics of glycogen synthase in extracts of control and epinephrine-perfused muscle with the kinetics of purified rat skeletal muscle glycogen synthase a phosphorylated to various degrees by cAMP-dependent protein kinase indicated that the enzyme was already substantially phosphorylated in control muscle and that epinephrine treatment caused further phosphorylation of synthase, presumably via cAMP-dependent protein kinase. These data provide a basis for speculation about in vivo regulation of the enzyme.  相似文献   

14.
The presence of adenosine receptors coupled to adenylate cyclase in cultured cardiocytes from atria and ventricles from neonatal rats is demonstrated in these studies. N-Ethylcarboxamideadenosine (NECA), l-N6-phenylisopropyladenosine (PIA), and 2-chloroadenosine (2-cl-Ado) stimulated adenylate cyclase in a concentration-dependent manner in both cultured atrial and ventricular cells. The order of potency of stimulation was NECA > PIA > 2-cl-Ado. The stimulation of adenylate cyclase by NECA was enhanced by guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine in both these cells. Other agonists such as epinephrine, norepinephrine, dopamine, F?, and forskolin were also able to stimulate adenylate cyclase, although the extent of stimulation by these agents was higher in ventricular than in atrial cells. The stimulation of adenylate cyclase by epinephrine and norepinephrine was inhibited by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol, and haloperidol inhibited dopamine-stimulated adenylate cyclase activity to the same extent. Forskolin, at its maximal concentration, potentiated the stimulatory effect of epinephrine, norepinephrine, and dopamine on adenylate cyclase in both atrial and ventricular cardiocytes, but the interaction of NECA with epinephrine, norepinephrine, or dopamine was different in atrial and ventricular cells. The stimulation by an optimal concentration of NECA was additive with maximal stimulation by the catecholamines in atrial cells but not in ventricular cells. The data suggest the existence of adenosine “Ra” and catecholamine receptors in cultured atrial and ventricular cardiocytes. It can be postulated that adenosine in addition to its role as a potent vasodilator might regulate cardiac performance through its interaction with “Ra” receptors associated with adenylate cyclase. The difference in the mode of interaction of adenosine with catecholamines in atrial and ventricular cells suggests that the mechanism by which these agents activate adenylate cyclase may be different in these cells.  相似文献   

15.
Oxidation of [14C] glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol, epinephrine and norepinephrine, which all interact with beta-adrenergic receptors and by adrenocorticotrophic hormone. In contrast alpha-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The beta-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, epinephrine or norepinephrine. Conversely, the alpha-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both lipolysis and glucose metabolism in the present of either epinephrine or norepinephrine. All alpha-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered lipolysis and glucose oxidation isolated adipocytes exposed to isoproterenol. However, when adrenocorticotropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the alpha-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both alpha and beta adrenergic receptors on hamster epididymal adipocytes and suggest that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through beta receptors.  相似文献   

16.
The effects of the alpha 1-adrenergic agonist methoxamine and the alpha 2-adrenergic agonist clonidine on isoproterenol stimulated adenylate cyclase activity were examined in plasma membranes prepared from female human subcutaneous adipose tissue. It was found that in the presence of 10 microM GTP and 100 mM NaCl increasing concentrations of both agonists inhibited basal and isoproterenol-stimulated adenylate cyclase activity. The inhibitory action of 5 x 10(-7) M clonidine could not be overcome by increasing concentrations of isoproterenol. These results suggest both alpha 1- and alpha 2-adrenergic agonists inhibit beta-agonist-stimulated adenylate cyclase activity in human adipose tissue.  相似文献   

17.
Adenylate cyclase in Drosophila melanogaster heads is stimulated 5-6-fold by low concentrations of octopamine. The octopamine stimulation is inhibited by low concentrations of the alpha-adrenergic ligands phentolamine and dihydroergotamine and of chlorpromazine, but not by low concentrations of the beta-antagonist propranolol and by the alpha-antagonist yohimbine. d-Tubocurarine enhances the octopamine effect. Tyramine, norepinephrine, and epinephrine also stimulate the cyclase, probably via the octopamine receptor. Serotonin and dopamine stimulate Drosophila adenylate cyclase 1.3-1.4-fold; at least the latter putative neurotransmitter seems to interact with a receptor distinct from the octopamine receptor. Prolonged incubation with dopamine in vitro abolishes adenylate cyclase basal activity as well as responsiveness to guanyl nucleotides, NaF, and putative neurotransmitters.  相似文献   

18.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

19.
In the presence of either methyl xanthines or adenosine deaminase, isoproterenol elicited large dramatic increases in accumulation of cyclic AMPP. In contrast, cyclic AMP accumulation in response to epinephrine or norepinephrine was not potentiated by either methyl xanthines or by adenosine deaminase. Blocking the alpha adrenergic activity of norepinephrine and epinephrine with phentolamine established synergism between these catecholamines and methyl xanthines and adenosine deaminase. The activity of the particulate phosphodiesterase was not influenced by norepinephrine suggesting that the lack of synergism between the catecholamines norepinephrine and epinephrine and methyl xanthines is unrelated to this enzyme. The data are interpreted to suggest that the alpha adrenergic activity of catecholamines prevents the potentiation of cyclic AMP accumulation that occurs when the action of endogenously produced adenosine is interfered with, either by its degradation with adenosine deaminase or by receptor blockade with methyl xanthine. Because a major action of adenosine on fat cells is to inhibit adenylate cyclase it is suggested that alpha adrenergic receptor activation limits the extent to which the enzyme adenylate cyclase can be activated in a fashion similar to that of adenosine.  相似文献   

20.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5'-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 microM. 5'-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 microM. Beta adrenergic amines accelerated the rate of 5'-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol approximately soterenol approximately salbutamol greater than epinephrine greater than norephrine. Catecholamine activation was antagonized by propranolol and the beta2 antagonist butoxamine; the beta1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by beta adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the beta2 type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号