首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Meyer E  Kappock TJ  Osuji C  Stubbe J 《Biochemistry》1999,38(10):3012-3018
Formation of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) in the purine pathway in most prokaryotes requires ATP, HCO3-, aminoimidazole ribonucleotide (AIR), and the gene products PurK and PurE. PurK catalyzes the conversion of AIR to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) in a reaction that requires both ATP and HCO3-. PurE catalyzes the unusual rearrangement of N5-CAIR to CAIR. To investigate the mechanism of this rearrangement, [4,7-13C]-N5-CAIR and [7-14C]-N5-CAIR were synthesized and separately incubated with PurE in the presence of ATP, aspartate, and 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) synthetase (PurC). The SAICAR produced was isolated and analyzed by NMR spectroscopy or scintillation counting, respectively. The PurC trapping of CAIR as SAICAR was required because of the reversibility of the PurE reaction. Results from both experiments reveal that the carboxylate group of the carbamate of N5-CAIR is transferred directly to generate CAIR without equilibration with CO2/HCO3- in solution. The mechanistic implications of these results relative to the PurE-only (CO2- and AIR-requiring) AIR carboxylases are discussed.  相似文献   

2.
De novo purine biosynthesis proceeds by two divergent paths. In bacteria, yeasts, and plants, 5-aminoimidazole ribonucleotide (AIR) is converted to 4-carboxy-AIR (CAIR) by two enzymes: N(5)-carboxy-AIR (N(5)-CAIR) synthetase (PurK) and N(5)-CAIR mutase (class I PurE). In animals, the conversion of AIR to CAIR requires a single enzyme, AIR carboxylase (class II PurE). The CAIR carboxylate derives from bicarbonate or CO(2), respectively. Class I PurE is a promising antimicrobial target. Class I and class II PurEs are mechanistically related but bind different substrates. The spirochete dental pathogen Treponema denticola lacks a purK gene and contains a class II purE gene, the hallmarks of CO(2)-dependent CAIR synthesis. We demonstrate that T. denticola PurE (TdPurE) is AIR carboxylase, the first example of a prokaryotic class II PurE. Steady-state and pre-steady-state experiments show that TdPurE binds AIR and CO(2) but not N(5)-CAIR. Crystal structures of TdPurE alone and in complex with AIR show a conformational change in the key active site His40 residue that is not observed for class I PurEs. A contact between the AIR phosphate and a differentially conserved residue (TdPurE Lys41) enforces different AIR conformations in each PurE class. As a consequence, the TdPurE·AIR complex contains a portal that appears to allow the CO(2) substrate to enter the active site. In the human pathogen T. denticola, purine biosynthesis should depend on available CO(2) levels. Because spirochetes lack carbonic anhydrase, the corresponding reduction in bicarbonate demand may confer a selective advantage.  相似文献   

3.
It is generally accepted that naturally existing functional domains can serve as building blocks for complex protein structures, and that novel functions can arise from assembly of different combinations of these functional domains. To inform our understanding of protein evolution and explore the modular nature of protein structure, two model enzymes were chosen for study, purT‐encoded glycinamide ribonucleotide formyltransferase (PurT) and purK‐encoded N5‐carboxylaminoimidazole ribonucleotide synthetase (PurK). Both enzymes are found in the de novo purine biosynthetic pathway of Escherichia coli. In spite of their low sequence identity, PurT and PurK share significant similarity in terms of tertiary structure, active site organization, and reaction mechanism. Their characteristic three domain structures categorize both PurT and PurK as members of the ATP‐grasp protein superfamily. In this study, we investigate the exchangeability of individual protein domains between these two enzymes and the in vivo and in vitro functional properties of the resulting hybrids. Six domain‐swapped hybrids were unable to catalyze full wild‐type reactions, but each hybrid protein could catalyze partial reactions. Notably, an additional loop replacement in one of the domain‐swapped hybrid proteins was able to restore near wild‐type PurK activity. Therefore, in this model system, domain‐swapped proteins retained the ability to catalyze partial reactions, but further modifications were required to efficiently couple the reaction intermediates and achieve catalysis of the full reaction. Implications for understanding the role of domain swapping in protein evolution are discussed.  相似文献   

4.
E Meyer  N J Leonard  B Bhat  J Stubbe  J M Smith 《Biochemistry》1992,31(21):5022-5032
Aminoimidazole riobnucleotide carboxylase, the sixth step in the purine biosynthetic pathway, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to carboxyaminoimidazole ribonucleotide (CAIR). The gene products of the purE and purK genes (PurE and PurK, respectively) thought to be responsible for this activity have been overexpressed and the proteins purified to homogeneity. PurE separates from PurK in the first ammonium sulfate fractionation during the purification. No evidence for association of the two gene products under a variety of conditions using a variety of methods could be obtained. To facilitate the assay for CAIR production, the purC gene product, 5-aminoimidazole-4-N-succinylcarboxamide ribonucleotide (SAICAR) synthetase has also been overexpressed and purified to homogeneity. The activities of PurE, PurK, and PurE.PurK have been investigated. PurE alone is capable of catalyzing the conversion of AIR to CAIR 1 million times faster than the nonenzymatic rate. The Km for HCO3- in the PurE-dependent reaction is 110 mM! PurK possesses an ATPase activity that is dependent on the presence of AIR. No bicarbonate dependence on this reaction could be demonstrated (less than 100 microM), and AIR is not carboxylated during the hydrolysis of ATP. Incubation of a 1:1 mixture of PurE and PurK at low concentrations of bicarbonate (less than 100 microM) revealed that CAIR is produced but requires the stoichiometric conversion of ATP to ADP and Pi. No dependence on the concentration of HCO3- could be demonstrated. A new energy requirement in the purine biosynthetic pathway has been established.  相似文献   

5.
BACKGROUND: Conversion of 5-aminoimidazole ribonucleotide (AIR) to 4-carboxyaminoimidazole ribonucleotide (CAIR) in Escherichia coli requires two proteins - PurK and PurE. PurE has recently been shown to be a mutase that catalyzes the unusual rearrangement of N(5)-carboxyaminoimidazole ribonucleotide (N(5)-CAIR), the PurK reaction product, to CAIR. PurEs from higher eukaryotes are homologous to E. coli PurE, but use AIR and CO(2) as substrates to produce CAIR directly. RESULTS: The 1.50 A crystal structure of PurE reveals an octameric structure with 422 symmetry. A central three-layer (alphabetaalpha) sandwich domain and a kinked C-terminal helix form the folded structure of the monomeric unit. The structure reveals a cleft at the interface of two subunits and near the C-terminal helix of a third subunit. Co-crystallization experiments with CAIR confirm this to be the mononucleotide-binding site. The nucleotide is bound predominantly to one subunit, with conserved residues from a second subunit making up one wall of the cleft. CONCLUSIONS: The crystal structure of PurE reveals a unique quaternary structure that confirms the octameric nature of the enzyme. An analysis of the native crystal structure, in conjunction with sequence alignments and studies of co-crystals of PurE with CAIR, reveals the location of the active site. The environment of the active site and the analysis of conserved residues between the two classes of PurEs suggests a model for the differences in their substrate specificities and the relationship between their mechanisms.  相似文献   

6.
N5-Carboxyaminoimidazole ribonucleotide mutase (N5-CAIR mutase or PurE) from Escherichia coli catalyzes the reversible interconversion of N5-CAIR to carboxyaminoimidazole ribonucleotide (CAIR) with direct CO2 transfer. Site-directed mutagenesis, a pH-rate profile, DFT calculations, and X-ray crystallography together provide new insight into the mechanism of this unusual transformation. These studies suggest that a conserved, protonated histidine (His45) plays an essential role in catalysis. The importance of proton transfers is supported by DFT calculations on CAIR and N5-CAIR analogues in which the ribose 5'-phosphate is replaced with a methyl group. The calculations suggest that the nonaromatic tautomer of CAIR (isoCAIR) is only 3.1 kcal/mol higher in energy than its aromatic counterpart, implicating this species as a potential intermediate in the PurE-catalyzed reaction. A structure of wild-type PurE cocrystallized with 4-nitroaminoimidazole ribonucleotide (NO2-AIR, a CAIR analogue) and structures of H45N and H45Q PurEs soaked with CAIR have been determined and provide the first insight into the binding of an intact PurE substrate. A comparison of 19 available structures of PurE and PurE mutants in apo and nucleotide-bound forms reveals a common, buried carboxylate or CO2 binding site for CAIR and N5-CAIR in a hydrophobic pocket in which the carboxylate or CO2 interacts with backbone amides. This work has led to a mechanistic proposal in which the carboxylate orients the substrate for proton transfer from His45 to N5-CAIR to form an enzyme-bound aminoimidazole ribonucleotide (AIR) and CO2 intermediate. Subsequent movement of the aminoimidazole moiety of AIR reorients it for addition of CO2 at C4 to generate isoCAIR. His45 is now in a position to remove a C4 proton to produce CAIR.  相似文献   

7.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

8.
The enzyme aminoimidazole ribonucleotide (AIR) carboxylase catalyzes the synthesis of the purine intermediate, 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). Previously, we have shown that the compound 4-nitro-5-aminoimidazole ribonucleotide (NAIR) is a slow, tight binding inhibitor of the enzyme with a Ki of 0.34 nM. The structural attributes and the slow, tight binding characteristics of NAIR implicated this compound as a transition state or reactive intermediate analog. However, it is unclear what molecular features of NAIR contribute to the mimetic properties for either of the two proposed mechanisms of AIR carboxylase. In order to gain additional information regarding the mechanism for the potent inhibition of AIR carboxylase by NAIR, a series of heterocyclic analogs were prepared and evaluated. We find that all compounds are weaker inhibitors than NAIR and that CAIR analogs are not alternative substrates for the enzyme. Surprisingly, rather subtle changes in the structure of NAIR can lead to profound changes in binding affinity. Computational investigations of enzyme intermediates and these inhibitors reveal that NAIR displays an electrostatic potential surface similar to a proposed reaction intermediate. The result indicates that AIR carboxylase is likely sensitive to the electrostatic surface of reaction intermediates and thus compounds which mimic these surfaces should possess tight binding characteristics. Given the evolutionary relationship between AIR carboxylase and N5-CAIR mutase, we believe that this concept extends to the mutase enzyme as well. The implications of this hypothesis for the design of selective inhibitors of the N5-CAIR mutase are discussed.  相似文献   

9.
In Escherichia coli, the PurT-encoded glycinamide ribonucleotide transformylase, or PurT transformylase, catalyzes an alternative formylation of glycinamide ribonucleotide (GAR) in the de novo pathway for purine biosynthesis. On the basis of amino acid sequence analyses, it is known that the PurT transformylase belongs to the ATP-grasp superfamily of proteins. The common theme among members of this superfamily is a catalytic reaction mechanism that requires ATP and proceeds through an acyl phosphate intermediate. All of the enzymes belonging to the ATP-grasp superfamily are composed of three structural motifs, termed the A-, B-, and C-domains, and in each case, the ATP is wedged between the B- and C-domains. Here we describe two high-resolution X-ray crystallographic structures of PurT transformylase from E. coli: one form complexed with the nonhydrolyzable ATP analogue AMPPNP and the second with bound AMPPNP and GAR. The latter structure is of special significance because it represents the first ternary complex to be determined for a member of the ATP-grasp superfamily involved in purine biosynthesis and as such provides new information about the active site region involved in ribonucleotide binding. Specifically in PurT transformylase, the GAR substrate is anchored to the protein via Glu 82, Asp 286, Lys 355, Arg 362, and Arg 363. Key amino acid side chains involved in binding the AMPPNP to the enzyme include Arg 114, Lys 155, Glu 195, Glu 203, and Glu 267. Strikingly, the amino group of GAR that is formylated during the reaction lies at 2.8 A from one of the gamma-phosphoryl oxygens of the AMPPNP.  相似文献   

10.
BACKGROUND: The purine biosynthetic pathway in procaryotes enlists eleven enzymes, six of which use ATP. Enzymes 5 and 6 of this pathway, formylglycinamide ribonucleotide (FGAR) amidotransferase (PurL) and aminoimidazole ribonucleotide (AIR) synthetase (PurM) utilize ATP to activate the oxygen of an amide within their substrate toward nucleophilic attack by a nitrogen. AIR synthetase uses the product of PurL, formylglycinamidine ribonucleotide (FGAM) and ATP to make AIR, ADP and P(i). RESULTS: The structure of a hexahistidine-tagged PurM has been solved by multiwavelength anomalous diffraction phasing techniques using protein containing 28 selenomethionines per asymmetric unit. The final model of PurM consists of two crystallographically independent dimers and four sulfates. The overall R factor at 2.5 A resolution is 19.2%, with an R(free) of 26.4%. The active site, identified in part by conserved residues, is proposed to be a long groove generated by the interaction of two monomers. A search of the sequence databases suggests that the ATP-binding sites between PurM and PurL may be structurally conserved. CONCLUSIONS: The first structure of a new class of ATP-binding enzyme, PurM, has been solved and a model for the active site has been proposed. The structure is unprecedented, with an extensive and unusual sheet-mediated intersubunit interaction defining the active-site grooves. Sequence searches suggest that two successive enzymes in the purine biosynthetic pathway, proposed to use similar chemistries, will have similar ATP-binding domains.  相似文献   

11.
4-Amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase catalyzes a complex rearrangement of 5-aminoimidazole ribonucleotide (AIR) to form HMP-P, the pyrimidine moiety of thiamine phosphate. We determined the three-dimensional structures of HMP-P synthase and its complexes with the product HMP-P and a substrate analog imidazole ribotide. The structure of HMP-P synthase reveals a homodimer in which each protomer comprises three domains: an N-terminal domain with a novel fold, a central (betaalpha)(8) barrel and a disordered C-terminal domain that contains a conserved CX(2)CX(4)C motif, which is suggestive of a [4Fe-4S] cluster. Biochemical studies have confirmed that HMP-P synthase is iron sulfur cluster-dependent, that it is a new member of the radical SAM superfamily and that HMP-P and 5'-deoxyadenosine are products of the reaction. M?ssbauer and EPR spectroscopy confirm the presence of one [4Fe-4S] cluster. Structural comparisons reveal that HMP-P synthase is homologous to a group of adenosylcobalamin radical enzymes. This similarity supports an evolutionary relationship between these two superfamilies.  相似文献   

12.
N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) mutase (PurE) catalyzes the reversible interconversion of acid-labile compounds N5-CAIR and 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). We have examined PurE from the acidophilic bacterium Acetobacter aceti (AaPurE), focusing on its adaptation to acid pH and the roles of conserved residues His59 and His89. Both AaPurE and Escherichia coli PurE showed quasi-reversible acid-mediated inactivation, but wt AaPurE was much more stable at pH 3.5, with a > or = 20 degrees C higher thermal unfolding temperature at all pHs. His89 is not essential and does not function as part of a proton relay system. The kcat pH-rate profile was consistent with the assignment of pK1 to unproductive protonation of bound nucleotide and pK2 to deprotonation of His59. A 1.85 A resolution crystal structure of the inactive mutant H59N-AaPurE soaked in CAIR showed that protonation of CAIR C4 can occur in the absence of His59. The resulting species, modeled as isoCAIR [4(R)-carboxy-5-iminoimidazoline ribonucleotide], is strongly stabilized by extensive interactions with the enzyme and a water molecule. The carboxylate moiety is positioned in a small pocket proposed to facilitate nucleotide decarboxylation in the forward direction (N5-CAIR --> CAIR) [Meyer, E., Kappock, T. J., Osuji, C., and Stubbe, J. (1999) Biochemistry 38, 3012-3018]. Comparisons with model studies suggest that in the reverse (nonbiosynthetic) direction PurE favors protonation of CAIR C4. We suggest that the essential role of protonated His59 is to lower the barrier to decarboxylation by stabilizing a CO2-azaenolate intermediate.  相似文献   

13.
Aminoimidazole ribonucleotide (AIR) synthetase (PurM) catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and P(i), the fifth step in de novo purine biosynthesis. The ATP binding domain of the E. coli enzyme has been investigated using the affinity label [(14)C]-p-fluorosulfonylbenzoyl adenosine (FSBA). This compound results in time-dependent inactivation of the enzyme which is accelerated by the presence of FGAM, and gives a K(i) = 25 microM and a k(inact) = 5.6 x 10(-)(2) min(-)(1). The inactivation is inhibited by ADP and is stoichiometric with respect to AIR synthetase. After trypsin digestion of the labeled enzyme, a single labeled peptide has been isolated, I-X-G-V-V-K, where X is Lys27 modified by FSBA. Site-directed mutants of AIR synthetase were prepared in which this Lys27 was replaced with a Gln, a Leu, and an Arg and the kinetic parameters of the mutant proteins were measured. All three mutants gave k(cat)s similar to the wild-type enzyme and K(m)s for ATP less than that determined for the wild-type enzyme. Efforts to inactivate the chicken liver trifunctional AIR synthetase with FSBA were unsuccessful, despite the presence of a Lys27 equivalent. The role of Lys27 in ATP binding appears to be associated with the methylene linker rather than its epsilon-amino group. The specific labeling of the active site by FSBA has helped to define the active site in the recently determined structure of AIR synthetase [Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M., and Ealick, S. E. (1999) Structure (in press)], and suggests additional flexibility in the ATP binding region.  相似文献   

14.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multimeric protein complex consisting of three distinct and separate components: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source and has a distinct architecture that is characteristic of the ATP-grasp superfamily of enzymes. Included in this superfamily are d-Ala d-Ala ligase, glutathione synthetase, carbamyl phosphate synthetase, N(5)-carboxyaminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide transformylase, all of which have known three-dimensional structures and contain a number of highly conserved residues between them. Four of these residues of biotin carboxylase, Lys-116, Lys-159, His-209, and Glu-276, were selected for site-directed mutagenesis studies based on their structural homology with conserved residues of other ATP-grasp enzymes. These mutants were subjected to kinetic analysis to characterize their roles in substrate binding and catalysis. In all four mutants, the K(m) value for ATP was significantly increased, implicating these residues in the binding of ATP. This result is consistent with the crystal structures of several other ATP-grasp enzymes, which have shown specific interactions between the corresponding homologous residues and cocrystallized ADP or nucleotide analogs. In addition, the maximal velocity of the reaction was significantly reduced (between 30- and 260-fold) in the 4 mutants relative to wild type. The data suggest that the mutations have misaligned the reactants for optimal catalysis.  相似文献   

15.
Imidazole glycerol phosphate (IGP) synthase, a triad glutamine amidotransferase, catalyzes the fifth step in the histidine biosynthetic pathway, where ammonia from glutamine is incorporated into N1-[(5'-phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to yield IGP and 5'-(5-aminoimidazole-4-carboxamide) ribonucleotide (AICAR). The triad family of glutamine amidotransferases is formed by the coupling of two disparate subdomains, an acceptor domain and a glutamine hydrolysis domain. Each of the enzymes in this family share a common glutaminase domain for which the glutaminase activity is tightly regulated by an acceptor substrate domain. In IGP synthase the glutaminase and PRFAR binding sites are separated by 30 A. Using kinetic analyses of site-specific mutants and molecular dynamic simulations, we have determined that an interdomain salt bridge in IGP synthase between D359 and K196 (approximately 16 A from the PRFAR binding site) plays a key role in mediating communication between the two active sites. This interdomain contact modulates the glutaminase loop containing the histidine and glutamic acid of the catalytic triad to control glutamine hydrolysis. We propose this to be a general principle of catalytic coupling that may be applied to the entire triad glutamine amidotransferase family.  相似文献   

16.
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.  相似文献   

17.
BACKGROUND: Homoserine kinase (HSK) catalyzes an important step in the threonine biosynthesis pathway. It belongs to a large yet unique class of small metabolite kinases, the GHMP kinase superfamily. Members in the GHMP superfamily participate in several essential metabolic pathways, such as amino acid biosynthesis, galactose metabolism, and the mevalonate pathway. RESULTS: The crystal structure of HSK and its complex with ADP reveal a novel nucleotide binding fold. The N-terminal domain contains an unusual left-handed betaalphabeta unit, while the C-terminal domain has a central alpha-beta plait fold with an insertion of four helices. The phosphate binding loop in HSK is distinct from the classical P loops found in many ATP/GTP binding proteins. The bound ADP molecule adopts a rare syn conformation and is in the opposite orientation from those bound to the P loop-containing proteins. Inspection of the substrate binding cavity indicates several amino acid residues that are likely to be involved in substrate binding and catalysis. CONCLUSIONS: The crystal structure of HSK is the first representative in the GHMP superfamily to have determined structure. It provides insight into the structure and nucleotide binding mechanism of not only the HSK family but also a variety of enzymes in the GHMP superfamily. Such enzymes include galactokinases, mevalonate kinases, phosphomevalonate kinases, mevalonate pyrophosphate decarboxylases, and several proteins of yet unknown functions.  相似文献   

18.
Zhang Y  White RH  Ealick SE 《Biochemistry》2008,47(1):205-217
Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.  相似文献   

19.
Glycinamide ribonucleotide (GAR) synthetase, GAR transformylase and aminoimidazole ribonucleotide (AIR) synthetase are the second, third and fifth enzymes in the 10-step de novo purine biosynthetic pathway. From a cDNA library of Arabidopsis thaliana, cDNAs encoding the above three enzymes were cloned by functional complementation of corresponding Escherichia coli mutants. Each of the cDNAs encode peptides comprising the complete enzymatic domain of either GAR synthetase, GAR transformylase or AIR synthetase. Comparisons of the three Arabidopsis purine biosynthetic enzymes with corresponding enzymes/polypeptide-fragments from procaryotic and eucaryotic sources indicate a high degree of conserved homology at the amino acid level, in particular with procaryotic enzymes. Assays from extracts of E. coli expressing the complementing clones verified the specific enzymatic activity of Arabidopsis GAR synthetase and GAR transformylase. Sequence analysis, as well as Northern blot analysis indicate that Arabidopsis has single and monofunctional enzymes. In this respect the organization of these three plant purine biosynthesis genes is fundamentally different from the multifunctional purine biosynthesis enzymes characteristic of other eucaryotes and instead resembles the one gene, one enzyme relationship found in procaryotes.  相似文献   

20.
The change in reaction energetics of the bicarbonate-dependent ATPase reaction of Escherichia coli carbamoyl phosphate synthetase has been investigated for two site-directed mutations of the essential cysteine in the small subunit. Cysteine 269 has been proposed to facilitate the hydrolysis of glutamine by the formation of a glutamyl-thioester intermediate. The two mutant enzymes, C269S and C269G, along with the isolated large subunit, exhibit a 2-2.6-fold increase in the bicarbonate-dependent ATPase reaction relative to that observed for the wild type enzyme. In the presence of glutamine the overall enhancement is 3.7 and 9.0 for the C269G and C269S mutant enzymes, respectively. Carboxyphosphate is an intermediate in the bicarbonate-dependent ATPase reaction. The cause of the rate enhancements was investigated by measuring the positional isotope exchange rate in [gamma-18O4] ATP relative to the net rate of ATP hydrolysis. This ratio (Vex/Vchem) is a measure of the partitioning of the enzyme-carboxyphosphate-ADP complex. The partitioning ratio for the mutants is identical within experimental error to that observed for the wild type enzyme. This observation is consistent with the conclusion that the ground state for the enzyme-carboxyphosphate-ADP complex in the mutants is destabilized relative to the same complex in the wild type enzyme. If the increase in the absolute rate of ATP hydrolysis was due to a stabilization of the transition state for carboxyphosphate hydrolysis then the positional isotope exchange rate relative to the chemical hydrolysis rate would have been expected to decrease in the mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号