首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli mannitol specific EII in membrane vesicles can be inhibited by the action of the oxidizable substrate-reduced phenazine methosulfate (PMS) in a manner similar to E. coli enzyme IIGlc [Robillard, G. T., & Konings, W. (1981) Biochemistry 20, 5025-5032]. The fact that reduced PMS and various oxidizing agents protect the enzyme from inactivation by the sulfhydryl reagents N-ethylmaleimide and bromopyruvate suggests that the active form possesses a dithiol which can be protected by conversion to a disulfide. The sulfhydryl-disulfide distribution has been examined in purified EIImtl by labeling studies with N-[1-14C]ethylmaleimide ( [14C]NEM). EIImtl can be alkylated at three positions per peptide chain. When alkylation takes place in 8 M urea, only two positions are labeled. The third position becomes labeled in urea only after treatment with DTT, suggesting that the native enzyme is composed of two subunits linked by a disulfide bridge. The remaining two sulfhydryl groups per peptide chain appear to undergo changes in oxidation state as indicated by the following results. (1) Treatment of the active enzyme with NEM leads to complete inactivation and incorporation of 1 mol of [14C]NEM per peptide chain. Oxidizing agents protect the activity and prevent labeling presumably by forming a disulfide. (2) Phosphorylating the enzyme (one phosphoryl group per peptide chain) fully protects the activity, but 1 mol of NEM per peptide chain is still incorporated. Subsequent dephosphorylation by adding mannitol causes a second mole of [14C]NEM to be incorporated and results in complete inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
H H Pas  G T Robillard 《Biochemistry》1988,27(15):5515-5519
The cysteines of the membrane-bound mannitol-specific enzyme II (EIIMtl) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity [Roossien, F. F., & Robillard, G. T. (1984) Biochemistry 23, 211-215]. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linked cysteine was accomplished by inactivation with [14C]iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.  相似文献   

3.
To determine the intermolecular cross-linking site on the primary structure sarcoplasmic reticulum (SR) Ca-ATPase, the conditions for the specific binding of 14C-labeled 1,4-phenylene bis maleimide (PBM) or 14C-labeled N-ethylmaleimide (NEM) to the ATPase were explored. SR vesicles were preincubated with nonradioactive PBM in the presence of 1 mM vanadate for 1 h, then washed by centrifugation to remove free PBM and vanadate. When the pretreated SR vesicles were allowed to react with 1 mM [14C]PBM in the presence of 1 mM AMPPNP, the amount of [14C]PBM incorporated into the ATPase increased with time in parallel with the formation of dimeric ATPase and reached the maximum labeling density of 1 mol of [14C]PBM per mol of dimeric ATPase at 40 min after the start of the reaction. When the pretreated SR vesicles were allowed to react with 2 mM [14C]NEM in the absence of AMPPNP, a maximum of about 2 mol of NEM was bound per mol of the ATPase monomer. The labeling density of [14C]NEM decreased from 2 to 1 mol per mol of the ATPase when the SR vesicles were allowed to react with [14C]NEM in the presence of AMPPNP. From the analysis of the amino acid composition of the two major [14C]NEM-labeled peptides isolated from the thermolytic digest of the enzyme after the reaction of SR with [14C]NEM in the absence of AMPPNP, we deduced that [14C]NEM was incorporated into Cys377 and Cys614. On the other hand, the labeling of SR in the presence of AMPPNP resulted in inhibition of the [14C]NEM binding to Cys614, leaving Cys377 unaltered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

5.
H H Pas  G T Robillard 《Biochemistry》1988,27(16):5835-5839
During a cycle of mannitol transport and phosphorylation, the phosphoryl group originating on P-enolpyruvate is transferred, consecutively, to two sites on the Escherichia coli mannitol-specific carrier (EIIMtl) before being placed on mannitol [Pas et al. (1988) Biochemistry (in press)]. The peptides constituting the two EIIMtl phosphorylation sites have been isolated and identified after labeling with [32P]-P-enolpyruvate. The first site is localized in peptide Leu 541-Lys 560. The hydrolysis characteristics of the phosphorylated peptide indicate that a histidine residue is phosphorylated. The second site is located in peptide Ile 380-Met 393, which contains the activity-linked cysteine (384) [Pas & Robillard (1988) Biochemistry (in press)]. The hydrolysis characteristics of the phosphopeptide indicate that Cys 384 is the site of phosphorylation.  相似文献   

6.
The mannitol transport protein (EIImtl) carries out translocation with concomitant phosphorylation of mannitol from the periplasm to the cytoplasm, at the expense of phosphoenolpyruvate (PEP). The phosphoryl group which is needed for this group translocation is sequentially transferred from PEP via two phosphorylation sites, located exclusively on the C-terminal cytoplasmic domain, to mannitol. Oligonucleotide-directed mutagenesis was used to investigate the precise role of these sites in phosphoryl group transfer, by producing specific amino acid substitutions. The first phosphorylation site, His-554 (P1), was replaced by Ala, which renders the EII-H554A completely inactive in PEP-dependent mannitol phosphorylation, but not in mannitol/mannitol 1-phosphate exchange. The P2 site mutant, EII-C384S, was inactive both in the mannitol phosphorylation reaction and in the exchange reaction, due to replacement of the essential Cys-384 by Ser. Although EII-H554A and EII-C384S were both catalytically inactive in the PEP-dependent phosphorylation, EII-C384S was able to restore up to 55% of the wild-type mannitol phosphorylation activity with the EII-H554A mutant, indicating a direct phosphotransfer between two subunits. These phosphorylation data together with the data obtained from mannitol/mannitol phosphate exchange kinetics, after mixing EII-H554A and EII-C384S, indicated the formation of functionally stable heterodimers, which consist of an EII-H554A and an EII-C384S monomer.  相似文献   

7.
Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.  相似文献   

8.
Competitive binding and fluorescence energy transfer experiments were used to examine the binding of 2'[3']-O-(2,4,6-trinitrophenyl) adenosine-5'-diphosphate (TNP-ADP) to the catalytic site of Ca ATPase. Fluorescein isothiocyanate (FITC), which is known to covalently bind near the catalytic site (13), was shown to exclude all TNP-ADP binding. TNP-ADP, in turn, will protect against FITC labeling of the Ca ATPase in its native state and in both phosphoenzyme forms. The competitive nature of these probes indicates that TNP-ADP binds to the catalytic site exclusively. Fluorescence energy transfer studies using TNP-ADP as an energy acceptor and 1,N6-ethenoadenosine-5'-diphosphate (epsilon-ADP) as an energy donor were used to estimate the distance between nucleotide binding sites in the enzyme complex. A lower limit for the distance measured was 44 A. This is interpreted to be the distance between catalytic sites on adjacent monomers of a dimer unit. The results of this work are consistent with a single nucleotide site per ATPase monomer.  相似文献   

9.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The mannitol-specific enzyme II (mannitol permease) of the Escherichia coli phosphotransferase system (PTS) catalyzes the concomitant transport and phosphorylation of D-mannitol. Previous studies have shown that the mannitol permease (637 amino acid residues) consists of 2 structural domains of roughly equal size: an N-terminal, hydrophobic, membrane-bound domain and a C-terminal, hydrophilic, cytoplasmic domain. The C-terminal domain can be released from the membrane by mild proteolysis of everted membrane vesicles [Stephan, M.M., & Jacobson, G.R. (1986) Biochemistry 25, 8230-8234]. In this report, we show that phosphorylation of the intact permease by [32P]HPr (a general phosphocarrier protein of the PTS) followed by tryptic separation of the two domains resulted in labeling of only the C-terminal domain. Phosphorylation of the C-terminal domain occurred even in the complete absence of the N-terminal domain, showing that the former contains most, if not all, of the critical residues comprising the interaction site for phospho-HPr. The phosphorylated C-terminal domain, however, could not transfer its phospho group to mannitol, suggesting that the N-terminal domain is necessary for mannitol binding and/or phosphotransfer from the enzyme to the sugar. The elution profile of the C-terminal domain after molecular sieve chromatography showed that the isolated domain is monomeric, unlike the native permease which is likely a dimer in the membrane. Experiments employing a deletion mutation of the mtlA gene, which encodes a protein lacking the first phosphorylation site in the C-terminal domain (His-554) but retaining the second phosphorylation site (Cys-384), demonstrated that a phospho group could be transferred from phospho-HPr to Cys-384 of the deletion protein, and then to mannitol, only in the presence of the full-length permease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Alkaline phosphatase from Escherichia coli contains three metal binding sites (A, B, and C) located at sites forming a triangle with sides of 4, 5, and 7 A (Wyckoff, H.W., Handschumacher, M., Murthy, K., and Sowadski, J.M. (1983) Adv. Enzymol. 55, 453). When all three sites are occupied by Cd(II) the enzyme has a very low turnover; at least 10(3) slower than the native Zn(II) enzyme. The slow turnover number has made the Cd(II) enzyme useful in NMR studies of the mechanism of alkaline phosphatase. The binding of arsenate to two forms of Cd(II) alkaline phosphatase (Cd(II)2alkaline phosphatase and Cd(II)6alkaline phosphatase) has been studied by 113Cd NMR. Cd(II)2alkaline phosphatase, pH 6.3, binds arsenate at only one monomer of the dimeric enzyme and causes migration of Cd(II) from the A site of one monomer to the B site of the arsenylated monomer. This same migration has previously been observed to accompany metal ion-dependent phosphate binding, but is much more rapid in the case of arsenate. The acceleration of migration induced by arsenate supports the conclusion based on the phosphate data that the substrate anion binds to the A site metal ion of one monomer prior to migration and that only the metal ion at A site is required for phosphorylation (arsenylation) of serine 102. The 113Cd chemical shifts of A and B site metal ions are very sensitive to the form of the bound arsenate, i.e. covalent (E-As) or noncovalent (E X As) complex. Like the analogous phosphate derivatives, the change of chemical shift of A site (to which phosphate is coordinated in the E X P complex) is much greater than that of the B site metal ion, when the arsenate shifts between the two intermediates, suggesting that arsenate is also coordinated to A site in the E X As intermediate. The chemical shifts of A and B site 113Cd(II) ions are considerably different in the arsenate and phosphate derivatives, while the C site 113Cd(II) ions have nearly identical chemical shifts. Thus the substrate appears to interact closely with both A and B sites, while C site appears relatively unimportant in phosphomonoester hydrolysis. The analogous behavior of arsenate and phosphate at the active center as evaluated by 113Cd NMR supports the validity of using the heavier arsenate derivative in x-ray diffraction studies.  相似文献   

12.
We have labeled the adenosine triphosphate binding site of Escherichia coli DNA gyrase with the ATP affinity analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP strongly inhibits the ATP-ase and DNA supercoiling activities of DNA gyrase, with 50% inhibition occurring at 7.5 microM inhibitor. ATP and ADP compete with PLP-AMP for binding and protect the enzyme against inhibition. The labeling appears to proceed by a Schiff base complex between the 4-formyl group of the pyridoxyl moiety of PLP-AMP and a protein primary amino group, since the inhibition and reagent labeling are reversible unless the complex is treated with NaBH4. Complete inactivation is estimated to occur upon the covalent incorporation of 2 mol of inhibitor/mol of gyrase. The Km for ATP was found to be unchanged for partially inhibited enzyme samples, suggesting an all-or-none type of inhibition. A 3H-labeled peptide spanning residues 93-131 of the B protein was isolated from a V-8 protease digest. Radioactive peaks corresponding to Lys-103 and Lys-110 were found during the Edman degradation, suggesting that these amino acids form part of the ATP binding site. A comparison of the amino acid sequence in this region with the sequences of other type II topoisomerases indicates the possible location of a common ATP binding domain.  相似文献   

13.
S W Weidman  G R Drysdale 《Biochemistry》1979,18(17):3822-3827
Electron paramagnetic resonance studies have indicated that nitrosodisulfonate binds to pig heart citrate synthase. Titration of the enzyme with nitrosodisulfonate revealed several binding sites for the probe per subunit with one site (KD approximately 0.1 mM) having a greater affinity than the others. The substrate, oxaloacetate, competed very effectively for one of the nitrosodisulfonate binding sites (KD less than 10(-2) mM) at the same time eliminating the weaker probe binding sites. Citrate and (R)- and (S)-malates also displaced the probe. Failure to resolve low- and high-field shoulder in the high gain--high modulation electron paramagnetic resonance spectra of the enzyme--nitrosodisulfonate system indicated that the bound probe was "weakly immobilized". However, the electron paramagnetic resonance spectrum of the bound probe changed to one typical of a "strongly immobilized" nitroxide upon the addition of a saturating concentration of the substrate acetyl coenzyme A (acetyl-CoA) to the enzyme--nitrosodisulfonate system, indicating the formation of a ternary acetyl-CoA-enzyme-probe complex. Titration of the acetyl-CoA saturated enzyme with the probe indicated one binding site per subunit (KD = 0.37 mM). Thus, nitrosodisulfonate may be considered as a paramagnetic analogue of oxaloacetate in its interaction with citrate synthase. These results are compared with our previous studies with this enzyme, employing a spin-labeled acyl coenzyme A (acyl-CoA) derivative [Weidman, S. W., Drysdale, G. R., & Mildvan, A. S. (1973) Biochemistry 12, 1874--1883].  相似文献   

14.
The Verotoxin 1 (VT1) B subunit binds to the glycosphingolipid receptor globotriaosylceramide (Gb3). Receptor-binding specificity is associated with the terminally linked Galalpha(1-4) Galbeta disaccharide sequence of the receptor. Recently, three globotriose (Galalpha[1-4] Galbeta [1-4] Glcbeta) binding sites per B-subunit monomer were identified by crystallography. Two of these sites (sites I and II) are located adjacent to phenylalanine-30. Site I was originally predicted as a potential Gb3 binding site on the basis of sequence conservation, and site II was additionally predicted based on computer modelling and receptor docking. The third (site III) was also identified by crystallography and is located at the N-terminal end of the alpha-helix. To determine the biological significance of sites II and III, and to support our previous findings of the significance of site I, we examined the binding properties and cytotoxicity of VT1 mutants designed to block Gb3 binding at each site selectively. The Scatchard analysis of saturation-binding data for each mutant revealed that only the amino acid substitutions predicted to affect site I (D-17E) or site II (G-62T) caused reductions in the binding affinity and capacity of VT1 for Gb3. Similarly, those mutations at sites I and II also caused significant reductions in both Vero and MRC-5 cell cytotoxicity (by seven and five logs, respectively, for G-62T and by four and two logs, respectively, for D-17E). In contrast, the substitution of alanine for W-34 at site III did not reduce the high-affinity binding of the B subunit, despite causing a fourfold reduction in the receptor-binding capacity. The corresponding mutant W-34A holotoxin had a two-log reduction in cytotoxicity on Vero cells and no statistically significant reduction on MRC-5 cells. We conclude that the high-affinity receptor binding most relevant for cell cytotoxicity occurs at sites I and II. In contrast, site III appears to mediate the recognition of additional Gb3 receptor epitopes but with lower affinity. Our results support the significance of the indole ring of W-34 for binding at this site.  相似文献   

15.
B H Lee  T Nowak 《Biochemistry》1992,31(7):2165-2171
The influence of pH on the activation of yeast enolase by Mn2+ was measured by steady-state kinetics. The pH influence on the binding of Mn2+ to apoenolase and the enolase-substrate complex was measured by EPR spectroscopy. At pH values above 6.6, activation by Mn2+ is fit by Michaelis-Menten kinetics, but at higher concentrations of Mn2+, inhibition is observed. Under conditions analogous to the kinetic studies, the enzyme binds two Mn2+ per dimer with a Kd in the micromolar range. In the presence of the substrate 2-phosphoglycerate, three thermodynamically distinct cation binding sites per monomer are detected and the binding constants are determined by a fit to the data. As the pH decreases, the reaction velocity decreases and the cation inhibition becomes minimal. Under these conditions, only two Mn2+ binding sites per monomer are observed; the third site must be the inhibitory site. The velocity and kinetic constants are minimally affected by buffer except at pH 5.8 with PIPES. Under these conditions, the velocity is only about 40% that observed with other buffers and only a single binding site for Mn2+ per monomer is detected in the presence or absence of substrate. A direct role in the catalytic mechanism by the second cation is called to question. The binding constant for Mn2+ at site I is independent of pH over the range from 7.5 to 5.2, and the binding at site II increases only slightly over this same pH range. These results indicate that the cation sites at positions I and II contain ligands that are pH independent over this range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The purified RNA polymerase complex of vesicular stomatitis virus required added thiols for maximal activity, whereas polymerase activity from whole disrupted virions did not. Maximal activity of the purified polymerase complex required greater than or equal to 1 mM added dithiothreitol. The polymerase was inactivated by N-ethylmaleimide (NEM) at 0 degree C, with k2 = 528 +/- 26 M-1 min-1. Activity was recovered by addition of L protein, but not N or NS, to the NEM-inactivated complex, indicating that the NEM-sensitive group was present on the L protein. Nucleoside triphosphates protected the enzyme against inactivation by N-ethylmaleimide. ATP was most effective, with KD = 0.58 +/- 0.07 mM, a value close to the Km of ATP reported previously for initiation of RNA synthesis. dATP was nearly as effective, and GTP was slightly less effective than ATP. Non-hydrolyzable analogs of ATP protected weakly, whereas ADP and pyrimidine triphosphates gave very poor, but still measurable, protection. The ATP binding site thus identified differs from the protein kinase-associated ATP binding site identified on L protein by Sanchez et al. (Sanchez, A., De, B.P., and Banerjee, A. K. (1985) J. Gen. Virol. 66, 1025-1036) in having a substantially lower affinity for ATP. Two putative ATP binding sites were identified in the L protein amino acid sequence, but none were found in the N or NS sequences.  相似文献   

17.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A photoactive, radioactive analogue of vinblastine, N-(p-azido[3,5-3H]benzoyl)-N'-(beta-amino-ethyl)vindesine ([ 3H]NABV), was used to localize the Vinca alkaloid binding site(s) on calf brain tubulin after establishing that its in vitro interactions with tubulin were comparable to those of vinblastine. Microtubule assembly was inhibited by 50% with 2 microM NABV or vinblastine. At higher drug concentrations, NABV and vinblastine both induced tubulin aggregation, and both drugs inhibited tubulin-dependent GTP hydrolysis. Vinblastine and NABV inhibited each other's binding to tubulin, but the binding of neither drug was inhibited by colchicine. Two classes of binding sites for NABV and vinblastine were found on calf brain tubulin. High-affinity sites had apparent KD values of 4.2 and 0.54 microM for NABV and vinblastine, respectively, whereas the low-affinity binding sites showed apparent KD values of 26 and 14 microM for NABV and vinblastine, respectively. Mixtures of tubulin and [3H]NABV were irradiated at 302 nm and analyzed for incorporation of radioactivity into protein. Photolabeling of both the alpha- and beta-subunits of tubulin with increasing concentrations of [3H]NABV exhibited a biphasic pattern characteristic of specific and nonspecific reactions. Nonspecific labeling was determined in the presence of excess vinblastine. Saturable specific covalent incorporation into both subunits of tubulin was observed, with an alpha:beta ratio of 3:2 and maximum saturable incorporation of 0.086 and 0.056 mol of [3H]NABV/mol of alpha-tubulin and beta-tubulin, respectively. Such photolabeling of the tubulin subunits will permit precise localization of Vinca alkaloid binding sites, including identification of the amino acid residues involved, an essential requirement for understanding the interactions of these drugs with tubulin.  相似文献   

19.
The nature of the intermediate-affinity (n2) Mn(II) binding sites in glutamine synthetase [EC 6.3.1.2] has been studied as a function of adenylylation in a variety of enzyme-metal complexes by EPR. In the absence of nucleotide the n2 Mn(II) environment is nearly isotropic, the Mn(II) bonds are highly ionic, and the interaction distance R greater than or equal to 12-14 A. Nucleotide binding at the n2 Mn(II) site renders the n2 Mn(II) signal unobservable and causes a reduction in signal amplitude (approximately 30%) and line broadening (approximately 6 G) at the high-affinity (n1) Mn(II) site. This behavior indicates that nucleotide binding induces a conformational change in the enzyme which brings the previously distant n1 and n2 sites into closer proximity (R less than or equal to 8-11 A), possibly for the purpose of activating the nucleotide for direct phosphoryl transfer to L-glutamate. In line with this suggestion, the broad, unresolved resonances in complexes containing both L-methionine SR-sulfoximine (MSOX) and nucleotide may result from the phosphorylation of MSOX. The n2 Mn(II) site is not affected by adenylylation in all the enzyme-metal complexes studied, which suggests that the regulatory effects of adenylylation may only act at the n1 Mn(II) sites.  相似文献   

20.
The kinetics and equilibrium of the interaction of [3H]spiperone with binding sites on human lymphocytes have been studied using radioligand analyses. The process of [3H]spiperone binding to these sites can be explained by the model of ligand interaction with two independent binding sites (high-affinity site, KD1 = 3 nM, and low-affinity site, KD2 = 20 nM), thus confirming the heterogeneity of the sites on human lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号