首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

2.
Muscle, liver, and kidney tissues from 38 polar bears (Ursus maritimus) caught in the Scoresby Sound area, Central East Greenland, were analysed for zinc, cadmium, mercury and selenium. In general, cadmium concentrations were low in muscle, liver and kidney tissue, with geometric means (g.m.) of 0.022 (range: <0.015–0.085), 0.841 (range: 0.092–3.29) and 13.1 (range: 1.04–115) g Cd/g wet weight (ww) respectively. This finding can be explained by low cadmium levels in the blubber of ringed seals. The concentration of mercury in muscle tissue was low (g.m. 0.071; range: 0.039–0.193 g Hg/g ww), whereas concentrations in liver and kidney tissue were relatively high (liver: g.m. 7.87; range: 1.35–24.8 g Hg/g ww, and kidney: g.m. 15.2; range: 1.59–66.6 g Hg/g ww). Mercury and cadmium were positively correlated with age in liver and kidney. Zinc was positively correlated with age in kidney, and selenium was correlated with age in liver. Contrary to other marine mammals, polar bears had higher mercury levels in the kidneys than in the liver. In all three tissues polar bears had significantly lower cadmium levels than ringed seals from the same area. Mercury levels were likewise significantly lower in the muscle tissue of polar bears than in ringed seals, whereas levels in the liver and kidney were significantly higher. The previous geographic trend for cadmium and mercury found in Canadian polar bears could be extended to cover East Greenland as well. Hence cadmium levels were higher in Greenland than in Canada, while the opposite was the case for mercury. Greenland polar bears had higher mercury and cadmium contents in livers and kidneys than polar bears from Svalbard. The mercury levels in muscle and liver tissue from polar bears from East Greenland were twice as high as found in bears from western Alaska, but half the levels found in northern Alaska. Cadmium and zinc were partially correlated in kidney tissue, and this was found for mercury and selenium as well. Cadmium and zinc showed molar ratios close to unity with the highest concentrations occurring in kidney tissue, while the levels of zinc exceeded cadmium in muscle and liver tissue by up to several decades. Mercury and selenium showed molar ratios close to unity in liver and kidneys.  相似文献   

3.
This study reports age-related changes in 7 element (iron, copper, zinc, manganese, mercury, cadmium and lead) concentrations in the liver, kidney and brain of male and female Sprague-Dawley rats from 1 to 364 days of age. Atomic absorption spectrometry was used for the measurements. Copper, mercury and cadmium in the male and female kidneys increased from weaning until 127 days of age, as did iron concentrations in the female liver and kidney. After 127 days, especially, the copper concentration in the female kidney and cadmium concentration in the male and female kidney increased further. Consistent and statistically significant (P less than 0.05) sex differences in element concentrations were found for three elements (iron, copper and zinc). Except for the zinc concentration in the liver from 50 to 72 days, iron (in liver and kidney), zinc (in kidney) and copper (in liver, kidney and brain) concentrations in female rats during the adult stage, were all higher than those of male rats. Isolated differences for other elements (manganese, mercury and cadmium) were also found. The data will be helpful when setting up long-term animal investigations of the biological effect of elements.  相似文献   

4.
Milk samples from the stomachs of harp seal pups were analysed for Cu, Zn, Se, Cd and Hg, as were liver, kidney, and muscle from mother-pup pairs. Tissues were also analysed for MeHg. Milk contained, in addition to essential trace metals, Cd and Hg (57 ng/g and 6.5 ng/g respectively).
Pups had mercury in all three tissues. The percent methyl mercury in liver of pups was higher than in liver of mothers. Mercury in muscle was mostly methyl mercury in both mothers and pups. Total mercury in liver of mothers but not pups was correlated positively with selenium. Estimates of ingested mercury by pups indicated they had acquired most of their mercury during gestation.
Although mothers had cadmium in liver and kidney, it was not detected in tissues of pups. Cadmium did not transfer across the placenta, while mercury did. Tissue concentrations of Cu and Zn were higher in pups than mothers. The presence of metallothionein in pup tissues was postulated.
A strong positive correlation of copper and selenium between mothers and pups indicated transfer of these elements from mother to pup in direct proportion to their concentrations in maternal liver and kidney.  相似文献   

5.
6.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver, especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p>0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung, and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9–48 h after sc injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24, or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

7.
In present study, bank voles Clethrionomys glareolus were peritioneally injected with different doses of cadmium, 0, 1.5, 3.0 mg Cd/kg body mass. Animals were sacrificed on the 21st day after cadmium exposure and the liver and kidney were obtained for cadmium, zinc and iron analysis using atomic absorption spectrometry. Results showed that cadmium had accumulated in the tissues according to dosage and sex. Cadmium affected the survival and body masses of dosed females. Cadmium decreased the iron concentrations in the liver of voles, whereas zinc concentrations increased in both the kidney and liver.  相似文献   

8.
At the levels used in the experiments, mercury and silver significantly depressed the activity of glutathione peroxidase (assayed with either H2O2 or cumene-OOH) in rat tissues, whereas cadmium or lead had no effect on this activity. The most pronounced effects of mercury and silver on glutathione peroxidase were found in the liver and kidneys, with much less effect in the testes and erythrocytes. Similar trends for the effects of these metals were noted for tissue selenium levels. Silver and mercury significantly depressed the selenium concentrations, but cadmium and lead had no effect upon the selenium levels. Mercury and silver had no effect upon the activity of glutathione transferase in liver and testes, but mercury caused a significant initial increase of its activity in the kidneys. At no time did silver have any significant effect on its activity in this organ.  相似文献   

9.
Catalase (CAT, EC 1.11.1.6) is an important enzyme in antioxidant defense system protecting animals from oxidative stress. Freshwater fish Oreochromis niloticus were exposed for 96 h to different concentrations of Ag(+), Cd(2+), Cr(6+), Cu(2+) and Zn(2+), known to cause oxidative stress, and subsequently CAT activities in liver, kidney, gill, intestine and brain were measured. In vivo, CAT was stimulated by all metals except Ag(+) in the liver and the highest increase in CAT activity (183%) resulted from 1.0 mg Cd(2+)/L exposure, whereas 0.5 mg Ag(+)/L exposure resulted in a sharp decrease (44%). In tilapia kidney, cadmium and zinc had no significant effects on CAT activity, whereas 0.1 mg Cr(6+)/L exposure caused a decrease (44%). Cadmium and zinc did not significantly affect the CAT activity in gill; however, 0.5 mg Ag(+)/L exposure caused an increase (66%) and 1.5 mg Cr(6+)/L exposure caused a decrease (97%) in CAT activity. All metals, except Cu(2+)(41% increase), caused significant decreases in CAT activity in the intestine. In brain, 1.0 mg Zn(2+)/L resulted in an increase in CAT activity (126%), while 1.5 mg Ag(+)/L exposure caused a 54% decrease. In vitro, all metals -- except Ag(+) and Cu(2+) in kidney -- significantly inhibited the CAT activity in all tissues. Results emphasized that CAT may be considered as a sensitive bioindicator of the antioxidant defense system.  相似文献   

10.
Dental amalgam mercury exposure in rats   总被引:2,自引:0,他引:2  
The aim of this study was to measure the distribution of mercury, in tissues of rats exposed to amalgam over a two months period. Possible interaction of mercury with copper and zinc in organs was also evaluated. Rats were either exposed to mercury from 4 dental amalgams, or fed the diet containing powdered amalgam during two months. Mercury was measured in the kidney, liver and brain, copper in kidney and brain and zinc in kidney. The results showed significantly higher concentrations of mercury in the kidneys and the brains of rats in both exposed groups compared to control. Even after two months of exposure to mercury brain mercury concentration in rats with amalgam fillings was 8 times higher than in the control and 2 times higher than in rats exposed to amalgam supplemented diet. The highest mercury concentration in the latter group was found in the kidneys and it was 5 times higher than in the control group. We found no significant differences between mercury levels in exposed and control rat's liver. Exposure to mercury from dental amalgams did not alter the concentrations of copper and zinc in the tissues. Histopathological analyses of rats tissues did not show any pathological changes. These results support previously proposed nose-brain transport of mercury released from dental amalgam fillings.  相似文献   

11.
Summary Samples of muscle, liver and kidney from 24 minke whales (Balaenoptera acutorostrata), 43 belugas (Delphinapterus leucas), and 98 narwhals (Monodon monoceros) were analyzed for zinc, cadmium, mercury, and selenium. Highly significant age accumulation of mercury was found. A lower level of significance of age accumulation of cadmium in belugas and narwhals is probably due to the fact that some of the highest cadmium concentrations are in subadults and young adults. The maximum concentrations of cadmium and mercury are very high: 1.68, 73.7, and 125 g cadmium, and 9.88, 42.8, and 4.61 g mercury per g wet weight of narwhal muscle, liver and kidney, respectively. The cadmium concentrations are correlated in the three organs, as are mercury and to a lesser extent selenium concentrations. The concentrations of mercury and selenium in liver are highly correlated.  相似文献   

12.
Atomic absorption spectrophotometric and fluorometric analyses were utilized for the determination of several elements in the whole bodies of both male and female Ascaris lumbricoides suum and from the muscle and kidney of the swine host. Concentrations of cadmium, calcium, copper, lead, magnesium, manganese, iron, selenium, potassium, and zinc in these tissues are reported. Statistical analysis (Tukey's procedure) of the data indicated no differences in metal concentrations between male and female ascarids. There were three instances in which the metal concentrations were statistically different in worm tissues and both hog tissues.  相似文献   

13.
The interaction of mercury and cadmium with lead was investigated by exposingOreochromis aureus to two heavy metals simulataneously. The chronic accumulation prolife of lead was determined by analyzing the liver, brain, gill filaments, intestine, caudal muscle, spleen, trunk kidney, and gonads following exposure to lead alone and in mixtures with mercury and cadmium. Nominal exposure concentrations of lead were 0.05, 0.10, 0.50, and 1.00 mg/L. Mixtures of lead (0.50 or 0.05 mg/L) with cadmium (0.05 mg/L) and lead (0.50 or 0.05 mg/L) with mercury (0.05 mg/L) were also used. Following 140 d of exposure to lead, the highest concentrations of lead consistently accumulated in the trunk kidney. The concentration of lead in the kidney was decreased by coexposure to mercury or cadmium, but increased in the muscle and liver. Under all exposure regimes, the median concentration of lead in the muscle exceeded safety levels recommended for human consumption. In a food fish, such asO. aureus, a knowledge of toxic metal accumulation patterns is of great importance.  相似文献   

14.
The effect of repeated parenteral administration of cadmium (0.75, 1.5 and 3.0 mg/kg) on tissue disposition and urinary excretion of cadmium, zinc, copper and iron has been studied in the male rat. Cadmium, zinc and copper accumulated in liver and kidney, but the concentration of iron did not alter significantly. The kidney weight relative to body weight showed a dose-related increase in weight of 25--65%. Excretion of cadmium in the urine increased directly with dosage and the increase was most significant when kidney damage had probably occurred. Administration of cadmium also resulted in dose-related increases in the urinary excretion of zinc, copper and iron. The cadmium concentration of blood increased with dosage of cadmium, and the plasma concentrations of zinc and copper were also raised but plasma iron concentration was diminished.  相似文献   

15.
In vivo X-ray fluorescence (XRF) techniques were used for biological monitoring of lead, cadmium, and mercury. Lead accumulates in bone, the level of which may thus be used for monitoring of exposure. However, there was no close association between lead levels in bone and exposure time, partly because of differences in exposure patterns and partly, probably, because of variations in the toxicokinetics of lead. There are at least two separate bone lead compartments. The average over-all half-time is probably 5–10 yr. The finger bone level may be an index of the lead status of the total skeleton. In lead workers, the mobilization of bone lead causes an “internal” lead exposure and affects the blood lead level considerably. In cadmium workers, in vivo XRF is a sensitive and risk-free method for assessment of accumulation in kidney cortex, the critical tissue as to toxic effects; workers displayed increased levels. However, there was no clear association with duration and intensity of exposure, cadmium levels in urine, or microglobulinuria. Determinations of kidney cadmium may add important information on the state of accumulation and, thus, risk of kidney damage. Workers exposed to elemental mercury vapor, as well as fishermen exposed to methyl mercury, had mercury levels in bone below the detection limit of the XRF method.  相似文献   

16.
The effects of sublethal concentrations of mercury (0.1mg/l) and zinc (6 mg/l) on acetylcholinesterase activity and acetylcholine content of gill, kidney, intestine, brain, liver and muscle of the freshwater fish Cyprinus carpio at 1, 15 and 30 days of exposure were studied. A significant suppression in acetylcholinesterase activity was recorded in all the organs from both mercury and zinc intoxicated fish at all the exposure periods. Concurrently, a significant increase in the content of acetylcholine in the organs was observed. These changes observed in the organs of mercury treated fish in different exposure periods were in the order 1 greater than 15 less than 30 days and in zinc treated fish 1 greater than 15 greater than 30 days. Further, these changes were greater in magnitude in the brain, liver and muscle (non-osmoregulatory organs) than in the gill, kidney and intestine (osmoregulatory organs) in both metal media.  相似文献   

17.
The effects of 45 days exposure to mercury, cadmium and lead on tissue GSH levels were studied in Oreochromis aureus (Steindachner). Liver, brain, gill filaments, intestine and caudal muscle were assayed after exposure to these heavy metals singly, or in combination. Significant increases in intestinal GSH concentrations consistently occurred after exposure to mixtures of heavy metals. Exposure to cadmium or lead did not change hepatic GSH levels, while exposure to two different concentrations of mercury caused significant increases in hepatic GSH.  相似文献   

18.
Acute exposure of Oreochromis aureus to cadmium or lead resulted in different tissue accumulation profiles. Trunk kidney accumulated the highest lead concentrations of all tissues analysed after 24-h or 1-week exposure to 0.1 mg l–1 lead as PbCl2 while exposure to 0.1 mg l –1 cadmium as CdCl2 for 24 h or 1 week resulted in the highest accumulations of cadmium in the intestine. Caudal muscle consistently accumulated the lowest levels of lead or cadmium after a 1-week exposure period.  相似文献   

19.
Mussels were translocated from a shell-fish breeding area (Sète, on the French Mediterranean coast) to sites exposed to trace element inputs in April 2000. They were recovered 3 months later. Whole soft tissues from all of the sites (n = 97) were analysed for arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. Metallothioneins (MTs) were also measured in the digestive gland and in the remaining tissues (allowing calculation of whole soft tissue concentrations) at 22 of the 97 sites. MT concentrations in the digestive gland and the whole soft tissues were strongly correlated. The condition index varied with food availability at different sites. This did not influenced MT concentrations in the whole soft tissues, whereas the condition index was negatively correlated to trace element concentrations. A model is proposed to minimize this influence of condition. Metal concentrations adjusted using this model showed significant correlations with MT levels for those metals (cadmium, copper, nickel and zinc) that are known to bind to this protein, with the exception of mercury. Even in moderately contaminated sites, measurement of the MT level in the soft tissues of mussels was generally able to discriminate between different levels of contamination, allowing the use of a simplified procedure compared with dissection of the digestive gland. It is recommended to avoid translocation and sampling during the reproductive period, which is well documented for commercial species such as Mytilus sp.  相似文献   

20.
Studies were performed regarding the effect of cadmium accumulation on the levels of essential elements (copper, zinc and iron) in the tissues of a marine bivalve mollusc, Mizuhopecten yessoensis, exposed to cadmium at 250 ppb during 2 weeks. It was found that the concentration of cadmium in the tissues increased in the order gonads < gills < hepatopancreas < kidney during exposure time. However, the highest value of concentration factor was recorded in the gills. Our data demonstrate that cadmium accumulation in all mollusc tissues is followed by the alterations in copper, zinc and iron concentration, but that the pattern of these changes varies with each tissue. Cadmium had the most pronounced effects on essential trace element homoeostasis in the kidney. The present study suggests that levels of the essential metals in a particular tissue can be modified depending on the level of cadmium accumulation. The possible mechanisms of the effects of cadmium on the essential trace elements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号