首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat.  相似文献   

2.
1. We studied feeding frequency in free-ranging grey seals using stomach temperature telemetry to test if previously reported sex differences in the diving, movement and diet were reflected in the temporal pattern of foraging success. 2. Data were retrieved from 21 of 32 grey seals from 1999 to 2001, totalling 343 days and 555 feeding events, with individual record length varying from 2 to 40 days (mean: 16.33 +/- 2.67 days/seal). 3. Seals fed on 57.8 +/- 6.46% of days sampled and had an average of 1.7 +/- 0.26 meals per day, but individual variability was apparent in the temporal distribution of feeding as evidenced by high coefficients of variation (coefficient of variation = 69.0%). 4. Bout analysis of non-feeding intervals of six grey seals suggests that feeding intervals of individuals were varied and probably reflect differences in prey availability. Grey seals tended to have many single feeding events with long periods separating each event, as would be expected for a large carnivore with a batch-reactor digestive system. 5. We found significant sex differences in the temporal distribution of feeding. The number of feeding events per day was greater in males (2.2 +/- 0.4 vs. 1.0 +/- 0.2), as was time associated with feeding per day (56.6 +/- 5.8 min vs. 43.9 +/- 9.4 min). 6. The number of feeding events varied with time of day with the least number occurring during dawn. Feeding event size differed significantly by time of day, with greater meal sizes during the dawn and the smallest meals during the night. 7. The length of time between meals increased with the size of the previous meal, and was significantly less in males (541.4 +/- 63.5 min) than in females (1092.6 +/- 169.9 min). 8. These results provide new insight into the basis of sex differences in diving and diet in this large size-dimorphic marine predator.  相似文献   

3.
Despite lessons from terrestrial systems, conservation efforts in marine systems continue to focus on identifying priority sites for protection based on high species richness inferred from range maps. Range maps oversimplify spatial variability in animal distributions by assuming uniform distribution within range and de facto giving equal weight to critical and marginal habitats. We used Marxan ver. 2.43 to compare species richness‐based systematic reserve network solutions using information about marine mammal range and relative abundance. At a global scale, reserve network solutions were strongly sensitive to model inputs and assumptions. Solutions based on different input data overlapped by a third at most, with agreement as low as 10% in some cases. At a regional scale, species richness was inversely related to density, such that species richness hotspots excluded highest‐density areas for all species. Based on these findings, we caution that species‐richness estimates derived from range maps and used as input in conservation planning exercises may inadvertently lead to protection of largely marginal habitat.  相似文献   

4.
Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus) (CSL) whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki) (GSL) whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers) during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in contrasting population trends in which CSL are more successful and potentially more resilient to climate change.  相似文献   

5.
Large mammals play significant roles in shaping the trophic structure of terrestrial ecosystems and affect the form of vegetation growth in many habitats. We studied large mammal community in a Mediterranean habitat mosaic generated by fires originally dominated by pine forests. We conducted camera-trapping surveys in three study sites with different fire histories, and we recorded eight large mammal species including brown bear (Ursus arctos), caracal (Caracal caracal), and wild goat (Capra aegagrus), which are of conservation importance. The mammal community found in the study sites was functionally diverse, including herbivores, omnivores, carnivores, seed dispersers, soil diggers, main preys, and top predators. The site burned 13 years ago had higher species richness than can be expected from a random pattern, but this was not the case in 30- and >40-year-old sites, showing the importance of relatively younger sites for large mammals. Eurasian badger had more probability to have more abundance in places with more open vegetation while wild goat had higher abundance in more dense vegetation. Young individuals of wild goat, brown bear, and wild boar were also detected in the study sites. The results indicate that burned habitats harbor a phylogenetically and functionally diverse large mammal community in landscapes originally dominated by Mediterranean pine forests. Therefore, these forests continue to retain importance for the large mammals after the fire, and burned habitats should be taken into consideration for the conservation and management plans together with mature forests in Mediterranean ecosystems.  相似文献   

6.
7.
Life history theory predicts a change in reproduction success with age as energy resources are limited and must be allocated effectively to maximize reproduction and survival. In this study, we use three reproductive performance measures, maternal expenditure, offspring weaning mass, and first-year survival, to investigate the role that maternal age plays in successful reproduction. Long-term uninterrupted life history data available for Marion Island’s southern elephant seals and mass change estimates from photogrammetry data allow for assessment of age-related reproduction performance and trade-offs. Known-aged adult females were photographed for photogrammetric mass estimation (n = 29) and their pups weighed at weaning during the 2009 breeding season. Maternal age and proportional mass loss positively influenced pup weaning mass. In turn, first-year pup return rates (as a proxy for survival) were assessed through the intensive mark–recapture program. Pup survival increased with female age and weaning mass. Pups of young females aged 3–6 years have a lower first-year survival probability compared with pups of older and larger females.  相似文献   

8.
9.
10.
Within the last few million years, repeated invasions from the North Pacific have brought evolutionarily divergent lineages of Macoma balthica clams into contact in the marginal and inland seas of northern Europe (Strelkov et al. 2007). These divergent M. balthica lineages now co-occur and hybridize extensively, blurring the distinction between the lineages and with some populations best described as 'hybrid swarms'. This scenario matches the prediction that hybridization between distinct genetic entities can generate evolutionary novelty, particularly in new environments where hybrid fitness is equal to or exceeds parental types (Arnold 1997; Seehausen 2004).  相似文献   

11.
Giant petrels ( Macronectes spp.) are the most sexually dimorphic of all seabirds. We used satellite-tracking and mass change during incubation to investigate the influence of sexual size dimorphism, in terms of the intersexual food competition hypothesis, on foraging and fasting strategies of northern giant petrels at South Georgia. Females foraged at sea whereas males foraged mainly on the South Georgia coast, scavenging on seal and penguin carcasses. Foraging effort (flight speed, distance covered, duration of foraging trips) was greater for females than for males. In contrast, foraging efficiency (proportionate daily mass gain while foraging) was significantly greater for males than for females. Females were significantly closer to the desertion mass threshold than males and could not compensate for the mass loss during the incubation fast while foraging, suggesting greater incubation costs for females than for males. Both sexes regulated the duration and food intake of foraging trips depending on the depletion of the body reserves. In males the total mass gain was best explained by mass at departure and body size. We suggest that sexual segregation of foraging strategies arose from size-related dominance at carcasses, promoting sexual size dimorphism. Our results indicate that sex-specific differences in fasting endurance, contest competition over food and flight metabolic rates are key elements in maintenance of sexual size dimorphism, segregating foraging strategies and presumably reducing competition between sexes.  相似文献   

12.
13.
14.
15.
Emerging Bayesian analytical approaches offer increasingly sophisticated means of reconstructing historical population dynamics from genetic data, but have been little applied to scenarios involving demographic bottlenecks. Consequently, we analysed a large mitochondrial and microsatellite dataset from the Antarctic fur seal Arctocephalus gazella, a species subjected to one of the most extreme examples of uncontrolled exploitation in history when it was reduced to the brink of extinction by the sealing industry during the late eighteenth and nineteenth centuries. Classical bottleneck tests, which exploit the fact that rare alleles are rapidly lost during demographic reduction, yielded ambiguous results. In contrast, a strong signal of recent demographic decline was detected using both Bayesian skyline plots and Approximate Bayesian Computation, the latter also allowing derivation of posterior parameter estimates that were remarkably consistent with historical observations. This was achieved using only contemporary samples, further emphasizing the potential of Bayesian approaches to address important problems in conservation and evolutionary biology.  相似文献   

16.
Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.  相似文献   

17.
18.
Chapman  M.G. 《Hydrobiologia》2000,426(1):75-87
Intertidal areas are habitats at the border of two very different environments: the marine environment and the terrestrial environment. In contrast to many habitats at borders, intertidal areas are very variable in space and time. They have upshore and alongshore gradients of environmental conditions, which change through time in predictable (due to changing tides) and unpredictable (due to changing weather) ways. Because most animals and plants on rocky shores are marine in origin, extreme highshore levels are generally considered more harsh and unpredictable environments than are mid- or lowshore levels. In this study, the linear distances and directions dispersed by the littorinid Littorina unifasciata while foraging were compared across randomly-chosen mid- and highshore replicated sites to test the hypothesis that movement during foraging was more variable from place to place in complex midshore habitats. Experiments were repeated on different days to test the hypothesis that temporal variability in movement was greater at high- than at midshore levels because environmental conditions necessary for foraging were more variable high on the shore. Finally, the data were used to test models about differences in variability among individuals in the same patch of habitat according to their recent history of submersion/emersion. In contrast to expectations, dispersal was more variable in space and time within and among highshore sites. The implications of such variable behaviour are discussed with respect to the generalization of patterns of behaviour from sparse data and the levels of replication needed in the design of experiments to investigate behaviour of intertidal animals.  相似文献   

19.
20.
Overexploitation has been the principal focus of marine mammal conservation. Less attention has been paid to bycatch in commercial fisheries; entanglement in lost and discarded fishing gear; food shortages owing to climate change and/or overharvesting of essential prey; point and non-point source pollution; and diseases. Also, relatively little attention has been paid to situations where marine mammals pose threats to the existence and human uses of other marine species. As overexploitation is addressed, focus must be shifted to these problems that are no less significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号