首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus anthracis lethal toxin (LT) impairs innate and adaptive immunity. Anthrax lethal factor stimulates cleavage of MAPK kinases, which prevents the activation of antiapoptotic MAPK targets. However, these MAPK targets have not been yet identified. Here, we found that LT induces macrophage apoptosis by enhancing caspase 8 activation and by preventing the activation of ribosomal S6 kinase-2 (RSK), a MAPK target, and the phosphorylation of CCAAT/enhancer binding protein-β (C/EBPβ) on T217, a RSK target. Expression of the dominant positive, phosphorylation mimic C/EBPβ-E217 rescued macrophages from LT-induced apoptosis by blocking the activation of procaspase 8. LT inhibited macrophage phagocytosis and oxidative burst and induced apoptosis in normal mice but not in C/EBPβ-E217 transgenic mice. These findings suggest that C/EBPβ may play a critical role in anthrax pathogenesis, at least in macrophages. apoptosis; macrophages; mitogen-associated protein kinase; ribosomal S6 kinase-2  相似文献   

2.
Upon activation by liver injury, hepatic stellate cells produce excessive fibrous tissue leading to cirrhosis. The hepatotoxin CCl(4) induced activation of RSK, phosphorylation of C/EBPbeta on Thr(217), and proliferation of stellate cells in normal mice, but caused apoptosis of these cells in C/EBPbeta-/- or C/EBPbeta-Ala(217) (a dominant-negative nonphosphorylatable mutant) transgenic mice. Both C/EBPbeta-PThr(217) and the phosphorylation mimic C/EBPbeta-Glu(217), but not C/EBPbeta-Ala(217), were associated with procaspases 1 and 8 in vivo and in vitro and inhibited their activation. Our data suggest that C/EBPbeta phosphorylation on Thr(217) creates a functional XEXD caspase substrate/inhibitor box (K-Phospho-T(217)VD) that is mimicked by C/EBPbeta-Glu(217) (KE(217)VD). C/EBPbeta-/- and C/EBPbeta-Ala(217) stellate cells were rescued from apoptosis by the cell permeant KE(217)VD tetrapeptide or C/EBPbeta-Glu(217).  相似文献   

3.
Murine macrophages have been classified as either susceptible or nonsusceptible to killing by anthrax lethal toxin (LT) depending upon genetic background. While considered resistant to LT killing, we found that bone marrow-derived macrophages (BMMs) from DBA/2, AKR, and C57BL/6 mice were slowly killed by apoptosis following LT exposure. LT killing was not restricted to in vitro assays, as splenic macrophages were also depleted in LT-injected C57BL/6 mice. Human macrophages, also considered LT resistant, similarly underwent slow apoptosis in response to LT challenge. In contrast, LT triggered rapid necrosis and a broad protein release in BMMs derived from BALB/c and C3H/HeJ, but not C57BL/6 mice. Released proteins included processed interleukin-18, confirming reports of inflammasome and caspase-1 activation in LT-mediated necrosis in macrophages. Complete inhibition of caspase-1 activity was required to block LT-mediated necrosis. Strikingly, minimal residual caspase-1 activity was sufficient to trigger significant necrosis in LT-treated macrophages, indicating the toxicity of caspase-1 in this process. IL-18 release does not trigger cytolysis, as IL-18 is released late and only from LT-treated macrophages undergoing membrane perturbation. We propose that caspase-1-mediated macrophage necrosis is the source of the cytokine storm and rapid disease progression reported in LT-treated BALB/c mice.  相似文献   

4.

Background

In response to liver injury, hepatic stellate cell (HSC) activation causes excessive liver fibrosis. Here we show that activation of RSK and phosphorylation of C/EBPβ on Thr217 in activated HSC is critical for the progression of liver fibrosis.

Methodology/Principal Findings

Chronic treatment with the hepatotoxin CCl4 induced severe liver fibrosis in C/EBPβ+/+ mice but not in mice expressing C/EBPβ-Ala217, a non-phosphorylatable RSK-inhibitory transgene. C/EBPβ-Ala217 was present within the death receptor complex II, with active caspase 8, and induced apoptosis of activated HSC. The C/EBPβ-Ala217 peptides directly stimulated caspase 8 activation in a cell-free system. C/EBPβ+/+ mice with CCl4-induced severe liver fibrosis, while continuing on CCl4, were treated with a cell permeant RSK-inhibitory peptide for 4 or 8 weeks. The peptide inhibited RSK activation, stimulating apoptosis of HSC, preventing progression and inducing regression of liver fibrosis. We found a similar activation of RSK and phosphorylation of human C/EBPβ on Thr266 (human phosphoacceptor) in activated HSC in patients with severe liver fibrosis but not in normal livers, suggesting that this pathway may also be relevant in human liver fibrosis.

Conclusions/Significance

These data indicate that the RSK-C/EBPβ phosphorylation pathway is critical for the development of liver fibrosis and suggest a potential therapeutic target.  相似文献   

5.
6.
7.
8.
9.
In this study, we evaluated the molecular mechanisms involved in morphine-induced macrophage apoptosis. Both morphine and TGF-beta promoted P38 mitogen-activated protein kinase (MAPK) phosphorylation, and this phosphorylation was inhibited by SB 202190 as well as by SB 203580. Anti-TGF-beta Ab as well as naltrexone (an opiate receptor antagonist) inhibited morphine-induced macrophage P38 MAPK phosphorylation. Anti-TGF-beta Ab also attenuated morphine-induced p53 as well as inducible NO synthase expression; in contrast, N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, inhibited morphine-induced P38 MAPK phosphorylation and Bax expression. Morphine also enhanced the expression of both Fas and Fas ligand (FasL), whereas anti-FasL Ab prevented morphine-induced macrophage apoptosis. Moreover, naltrexone inhibited morphine-induced FasL expression. In addition, macrophages either deficient in FasL or lacking p53 showed resistance to the effect of morphine. Inhibitors of both caspase-8 and caspase-9 partially prevented the apoptotic effect of morphine on macrophages. In addition, caspase-3 inhibitor prevented morphine-induced macrophage apoptosis. These findings suggest that morphine-induced macrophage apoptosis proceeds through opiate receptors via P38 MAPK phosphorylation. Both TGF-beta and inducible NO synthase play an important role in morphine-induced downstream signaling, which seems to activate proteins involved in both extrinsic (Fas and FasL) and intrinsic (p53 and Bax) cell death pathways.  相似文献   

10.
11.
12.
Trichomonas vaginalis, a flagellated protozoan parasite, is the causative organism of trichomoniasis. We have recently demonstrated that T. vaginalis induces apoptotic cell death via a Bcl-x(L)-dependent pathway in RAW264.7 macrophages. In this study, we attempted to characterize in detail the signaling cascades resulting in T. vaginalis-induced macrophage apoptosis, focusing particularly on mitochondrial changes and the role of p38 mitogen-activated protein kinase (p38 MAPK) activation. We found that T. vaginalis induced mitochondrial changes including the release of cytochrome c and the serial activation of caspases, leading to the activation of p38 MAPK in macrophages. These biochemical changes culminated in the apoptosis of the host cells. Caspase inhibitors induced a significant inhibition of T. vaginalis-induced nuclear damage, as well as the activation of p38 MAPK. Treatment with the p38 MAPK inhibitor, SB203580, or the overexpression of kinase-inactive p38 MAPK, induced an attenuation of T. vaginalis-induced apoptosis but not cytochrome c release, the activation of caspase-9 and caspase-3, or PARP cleavage. Furthermore, SB203580 treatment to human macrophages consistently blocked T. vaginalis-induced apoptosis. Collectively, our findings indicate that p38 MAPK signaling cascade is requisite to apoptosis of T. vaginalis-infected macrophage, and this apoptotic process occurs via the phosphorylation of p38 MAPK, which is located downstream of mitochondria-dependent caspase activation, conferring insight into the plausible molecular mechanism of T. vaginalis-immune evasion from macrophage attack.  相似文献   

13.
14.
Anthrax lethal toxin (LT) is comprised of protective antigen and lethal factor. Lethal factor enters mammalian cells in a protective antigen-dependent process and cleaves mitogen-activated protein kinase kinases. Although LT has no observable effect on many cell types, it causes necrosis in macrophages derived from certain mouse strains and apoptosis in activated mouse macrophages. In this study, we observed that LT treatment of three different human monocytic cell lines U-937, HL-60 and THP-1 did not induce cell death. Cells did become susceptible to the toxin, however, after differentiation into a macrophage-like state. Treatment with LT resulted in decreased phosphorylation of p38, ERK1/2 and JNK in both undifferentiated and differentiated HL-60 cells, suggesting that the change in susceptibility does not result from differences in toxin delivery or substrate cleavage. Death of differentiated HL-60 cells was accompanied by chromosome condensation and DNA fragmentation, but was not inhibited by the pan-caspase inhibitor Z-VAD-FMK. In addition, we observed that the macrophage differentiation process could be inhibited by LT. Our results indicate that LT-mediated death of mouse and human macrophages may occur through distinct processes and that the differentiation state of human cells can determine susceptibility or resistance to LT.  相似文献   

15.
Gu Q  Wang D  Wang X  Peng R  Liu J  Deng H  Wang Z  Jiang T 《Radiation research》2004,161(6):703-711
Radiation-induced endothelial cell apoptosis is involved in the development of many radiation injuries, including radiation-induced skin ulcers. The proangiogenic growth factor basic fibroblast growth factor (bFGF, NUDT6) enhances endothelial cell survival. In the present study, we set up a model of apoptosis in which primary cultured human umbilical vein endothelial cells (HUVECs) were irradiated with (60)Co gamma rays to explore the effects of bFGF on radiation-induced apoptosis of HUVECs and the signaling pathways involved. We found that bFGF inhibited radiation-induced apoptosis of HUVECs, and that the effect was mediated in part by the RAS/MEK/ MAPK/RSK (p90 ribosomal S6 kinase)/BAD pathway. This pathway was activated by exposure of irradiated HUVECs to bFGF, involving phosphorylation of FGFR, MEK and p44/42 MAPK. The survival-enhancing effect of bFGF was partly inhibited by U0126 and PD98059. The fact that the anti-apoptosis effect of bFGF on irradiated HUVECs was not completely abrogated by U0126 and PD98059 suggests that other survival signaling pathways may exist. Transfection of a dominant-negative form of RSK2 (DN RSK2) partly blocked the anti-apoptosis effect of bFGF in irradiated HUVECs. Moreover, we provide evidence for the first time that bFGF induced BAD phosphorylation (at serine 112) and CREB (cAMP response element-binding protein) activation (phosphorylation at serine 133) in gamma-irradiated HUVECs. In our model, inhibition of MAPK signaling-dependent phosphorylation of BAD at serine 112 promoted increased association with BCL-X(L), suggesting that MAPK pathway-dependent serine 112 phosphorylation of BAD is critical for the effect of bFGF on cell survival. These results showed that RAS/MAPK/BAD pathway participated in the bFGF-induced effect on survival of HUVECs exposed to radiation. It is suggested that RAS/ MAPK pathway in tumor vascular endothelium could be a potential therapeutic target to enhance the efficacy of ionizing radiation.  相似文献   

16.
Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE−/− mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE−/− mice after 12 weeks on a Western type diet revealed that both macrophages and – even though to a less extent – smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF), GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL) induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1−/−ApoE−/− mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase), namely ERK1/2 (extracellular-signal regulated kinase 1/2), signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2), p90RSK (p90 ribosomal s6 kinase), p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation and MAPK phosphorylation could be abolished by the GPx mimic ebselen. The present study demonstrates that GPx-1 deficiency has a significant impact on macrophage foam cell formation and proliferation via the p44/42 MAPK (ERK1/2) pathway encouraging further studies on new therapeutic strategies against atherosclerosis.  相似文献   

17.
The present study was undertaken to explore the role of interleukin-12 (IL-12) p40 in the expression of TNF-alpha in microglia. Interestingly, we have found that IL-12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose-dependently induced the production of TNF-alpha and the expression of TNF-alpha mRNA in BV-2 microglial cells. In addition to BV-2 microglial cells, p70, p402 and p40 also induced the production of TNF-alpha in mouse primary microglia and peritoneal macrophages. As the activation of both NF-kappaB and CCAAT/enhancer binding protein beta (C/EBPbeta) is important for the expression of TNF-alpha in microglial cells, we investigated the effect of p40 on the activation of NF-kappaB as well as C/EBPbeta. Activation of NF-kappaB as well as C/EBPbeta by p40 and inhibition of p40-induced expression of TNF-alpha by Deltap65, a dominant-negative mutant of p65, and DeltaC/EBPbeta, a dominant-negative mutant of C/EBPbeta, suggests that p40 induces the expression of TNF-alpha through the activation of NF-kappaB and C/EBPbeta. In addition, we show that p40 induced the activation of both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Interestingly, PD98059, an inhibitor of ERK, inhibited p40-induced expression of TNF-alpha through the inhibition of C/EBPbeta, but not that of NF-kappaB, whereas SB203580, an inhibitor of p38 MAPK, inhibited p40-induced expression of TNF-alpha through the inhibition of both NF-kappaB and C/EBPbeta. This study delineates a novel biological function of p40 in inducing TNF-alpha in microglia and macrophages.  相似文献   

18.
CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a mediator of cell survival and tumorigenesis. When C/EBPbeta(-/-) mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19(Arf) and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19(Arf) is dramatically elevated in C/EBPbeta(-/-) epidermis and that C/EBPbeta represses a p19(Arf) promoter reporter. To determine whether p19(Arf) is responsible for the proapoptotic phenotype in C/EBPbeta(-/-) mice, C/EBPbeta(-/-);p19(Arf-/-) mice were generated. C/EBPbeta(-/-);p19(Arf-/-) mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19(Arf) is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPbeta(-/-) epidermis, we generated K14-ER:Ras;C/EBPbeta(-/-) mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPbeta(-/-) mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPbeta represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPbeta may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents.  相似文献   

19.
20.
C/EBPbeta plays a pivotal role in activation of human immunodeficiency virus type 1 (HIV-1) in monocytes/macrophages. However, mechanisms for functional regulation of C/EBPbeta remain uncharacterized. Previous studies indicated that NF-kappaB activation by tumor necrosis factor (TNF) receptor family, which activates TNF receptor associated factor (TRAF), induces HIV-1 expression. We found that TRAF signals activate HIV-1 LTR with mutations of NF-kappaB sites in promonocytic cell line U937, suggesting existence of an alternative HIV-1 activating pathway. In this study, we have characterized the signal transduction pathway of TRAF other than that leading to NF-kappaB, using U937 cell line, and its subline, U1, which is chronically infected by HIV-1. We show that signals downstream of TRAF2 and TRAF5 activate p38 MAPK, which directly phosphorylates C/EBPbeta, and that activation of p38 MAPK potently activates C/EBPbeta-mediated induction of HIV-1 gene expression. We also show TRAF2 and TRAF5 are expressed in monocytes/macrophages of spleen samples from HIV-1 infected patients. Identification of TRAF-p38 MAPK-CEBPbeta pathway provides a new target for controlling reactivation of latent HIV-1 in monocytes/macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号