首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Black beetle virus is an insect virus with a split genome consisting of two single-stranded, messenger-active RNA molecules with molecular weights of 1.0 x 10(6) (RNA 1) and 0.5 x 10(6) (RNA 2), respectively. Virions contained two proteins, beta with a molecular weight of 43,000 (43K) and gamma (5K), and traces of a third protein, alpha (47K). When translated in cell-free extracts of rabbit reticulocytes, RNA 1 directed the synthesis of protein A (104K), whereas RNA 2 synthesized protein alpha. The in vitro translation efficiency of the two RNAs was roughly equal. Infection of cultured Drosophila cells induced the synthesis of five new proteins: A, alpha, beta, gamma, and B (10K), detected by autoradiography of polyacrylamide gels after electrophoresis of extracts from [(35)S]methionine-labeled cultures. All but protein gamma could also be detected by staining with Coomassie brilliant blue, indicating vigorous synthesis of viral proteins. Pulse-chase experiments in infected cells revealed the disappearance of protein alpha and the coordinate appearance of proteins beta and gamma, supporting an earlier proposal that coat protein of mature virions is made by cleavage of precursor alpha. Proteins A and B were stable in such pulse-chase experiments. The three classes of virus-induced proteins, represented by A, B, and alpha, were synthesized in markedly different amounts and with different kinetics. Synthesis of proteins A and B peaked early in infection and then declined, whereas synthesis of coat protein precursor alpha peaked much later. These results suggest that RNA 1 controls early replication functions via protein A (and also possibly protein B), whereas RNA 2 controls synthesis of coat protein required later for virion assembly.  相似文献   

3.
4.
Six overlapping viral RNAs are synthesized in cells infected with the avian coronavirus infectious bronchitis virus (IBV). These RNAs contain a 3'-coterminal nested sequence set and were assumed to be viral mRNAs. The seven major IBV virion proteins are all produced by processing of three polypeptides of ca. 23, 51, and 115 kilodaltons. These are the core polypeptides of the small membrane proteins, the nucleocapsid protein, and the 155-kilodalton precursor to the large membrane proteins GP90 and GP84, respectively. To determine which mRNAs specify these polypeptides, we isolated RNA from infected cells and translated it in a messenger-dependent rabbit reticulocyte lysate. Proteins of 23, 51, and 110 kilodaltons were produced. Two-dimensional tryptic peptide mapping demonstrated that these proteins were closely related to the major virion proteins. Fractionation of the RNA before cell-free translation permitted the correlation of messenger activities for synthesis of the proteins with the presence of specific mRNAs. We found that the smallest RNA, RNA A, directs the synthesis of P51, the nucleocapsid protein. RNA C, which contains the sequences of RNA A, directs the synthesis of the small membrane protein P23. RNA E directs the synthesis of the large virion glycoproteins. These results supported a model in which only the unique 5'-terminal domain of each IBV mRNA is active in translation and enabled us to localize genes for virion proteins on the IBV genome.  相似文献   

5.
Treatment of mouse L929 cells with mouse interferon (IFN) lowered the yield of vesicular stomatitis virus (VSV) in a dose-dependent manner. Accumulation of viral proteins was severely inhibited in IFN-treated cells, whereas cellular protein synthesis was not, indicating that the virus-induced shutoff of cellular protein synthesis was prevented by IFN. In order to identify the major target of IFN action precisely, the effect of IFN treatment on the synthesis of viral RNAs and proteins at various stages during the course of viral replication was examined. Accumulation of viral RNAs late in infection was inhibited, as was the case with viral proteins, but the synthesis of leader RNA and mRNAs early in infection was not significantly inhibited by treatment with a moderate dose of IFN. On the other hand, viral protein synthesis at an early stage of infection was strongly inhibited by IFN. The results indicate that the major target reaction of antiviral action of IFN against VSV multiplication is the translation of viral mRNA.  相似文献   

6.
7.
Nodamura virus (NOV) was purified from the hind limbs of infected suckling mice and used as a source of the two genomic RNAs of the virus, RNA 1 and RNA 2. Upon transfection of the viral RNAs into baby hamster kidney (BHK21) cells in culture, vigorous RNA replication ensued and single-stranded RNAs 1 and 2 accumulated to reach an abundance which approximated that of the cellular rRNAs. Transient synthesis of a small subgenomic RNA (RNA 3) was also observed, and double-stranded versions of RNAs 1, 2, and 3 were detected. Three major viral proteins were synthesized in transfected cells. Protein A (about 115 kDa) and protein B (about 15 kDa) were made transiently at early times after transfection, whereas a large amount of protein alpha (43 kDa), the precursor to the two viral coat proteins, was made continuously starting later in the infectious cycle. When very low concentrations of viral RNAs were used for transfection, preferential replication of RNA 1 occurred. This result was attributed to segregation of the transfected viral RNAs to separate cells in culture and the subsequent replication and amplification of RNA 1 in cells that had received no RNA 2. Accordingly, multiple passages of the viral RNAs by transfection at the limit dilution resulted in the purification of RNA 1 free of RNA 2 and demonstrated that RNA 1 was capable of prolonged autonomous replication which was also accompanied by the continuous synthesis of RNA 3. In cells transfected with RNA 1 alone, protein alpha was not synthesized and proteins A and B were made continuously. Electron microscopic analysis of BHK21 cells 24 h after transfection with NOV RNAs 1 and 2 showed that large numbers of virus particles accumulated in the cytoplasm and formed paracrystalline arrays in some regions. Whole NOV purified from transfected BHK21 cells was infectious for suckling mice and had an electrophoretic mobility that was similar but not identical to that of NOV purified from infected mouse muscle. The high yield of NOV, its simple genetic composition, and its unusual genome strategy make this virus an attractive system for the study of viral RNA replication in animal cells.  相似文献   

8.
9.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

10.
During the lytic phase of infection, the gamma herpesvirus Kaposi's Sarcoma-Associated Herpesvirus (KSHV) expresses a highly abundant, 1.1 kb nuclear noncoding RNA of unknown function. We observe that this polyadenylated nuclear (PAN) RNA avidly binds host poly(A)-binding protein C1 (PABPC1), which normally functions in the cytoplasm to bind the poly(A) tails of mRNAs, regulating mRNA stability and translation efficiency. During the lytic phase of KSHV infection, PABPC1 is re-localized to the nucleus as a consequence of expression of the viral shutoff exonuclease (SOX) protein; SOX also mediates the host shutoff effect in which host mRNAs are downregulated while viral mRNAs are selectively expressed. We show that whereas PAN RNA is not required for the host shutoff effect or for PABPC1 re-localization, SOX strongly upregulates the levels of PAN RNA in transient transfection experiments. This upregulation is destroyed by the same SOX mutation that ablates the host shutoff effect and PABPC1 nuclear re-localization or by removal of the poly(A) tail of PAN. In cells induced into the KSHV lytic phase, depletion of PAN RNA using RNase H-targeting antisense oligonucleotides reveals that it is necessary for the production of late viral proteins from mRNAs that are themselves polyadenylated. Our results add to the repertoire of functions ascribed to long noncoding RNAs and suggest a mechanism of action for nuclear noncoding RNAs in gamma herpesvirus infection.  相似文献   

11.
12.
The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus.  相似文献   

13.
M G Katze  M B Agy 《Enzyme》1990,44(1-4):332-346
The following reviews the role of mRNA stability in the regulation of both viral and cellular gene expression in virus-infected cells. Indeed, several eukaryotic viruses, including the human immunodeficiency virus, HIV-1, regulate cellular protein synthesis via such control mechanisms. The following systems will be discussed: (i) the degradation of viral and cellular mRNAs in cells infected by herpes simplex virus (HSV) and advances made using the HSV virion host shutoff mutant; (ii) the degradation of viral and cellular mRNA and ribosomal RNA in cells infected by vaccinia virus and the possible role of the oligoadenylate synthetase-RNase L pathways; (iii) the turnover of RNAs in cells infected by encephalomyocarditis virus, reovirus, and La Crosse virus; and finally (iv) recent studies from our laboratory on the degradation of cellular mRNAs in cells infected by HIV-1.  相似文献   

14.
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is an enveloped virus containing a single-stranded, positive-sense RNA genome. Nine mRNAs carrying a set of common 5' and 3' untranslated regions (UTR) are synthesized from the incoming viral genomic RNA in cells infected with SCoV. A nonstructural SCoV nsp1 protein causes a severe translational shutoff by binding to the 40S ribosomal subunits. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNA. However, the mechanism by which SCoV viral proteins are efficiently produced in infected cells in which host protein synthesis is impaired by nsp1 is unknown. In this study, we investigated the role of the viral UTRs in evasion of the nsp1-mediated shutoff. Luciferase activities were significantly suppressed in cells expressing nsp1 together with the mRNA carrying a luciferase gene, while nsp1 failed to suppress luciferase activities of the mRNA flanked by the 5'UTR of SCoV. An RNA-protein binding assay and RNA decay assay revealed that nsp1 bound to stem-loop 1 (SL1) in the 5'UTR of SCoV RNA and that the specific interaction with nsp1 stabilized the mRNA carrying SL1. Furthermore, experiments using an SCoV replicon system showed that the specific interaction enhanced the SCoV replication. The specific interaction of nsp1 with SL1 is an important strategy to facilitate efficient viral gene expression in infected cells, in which nsp1 suppresses host gene expression. Our data indicate a novel mechanism of viral gene expression control by nsp1 and give new insight into understanding the pathogenesis of SARS.  相似文献   

15.
Herpes simplex virus virion host shutoff function.   总被引:42,自引:33,他引:9       下载免费PDF全文
  相似文献   

16.
In one-step growth experiment of measles virus (MV) in Vero cells at 39 C, the appearance of MV infectivity was delayed for 24 hr and the maximum titer was reduced by approximately 1,000-fold, when compared with those at 35 C. MV infectivity was thermolabile at the high temperature. Penetration was rather enhanced at 39 C. By Northern blot hybridization, viral RNAs including 50S genome-sized RNA and mRNAs were first detectable 24 hr post-infection (PI) at 35 C and 36 hr PI at 39 C, respectively. Rapid degradation of viral mRNAs was not observed in the infected cells at 39 C. The synthesis of N, F, and M proteins was relatively reduced at the high temperature and appearance of the other viral protein was delayed, in agreement with the time course of viral RNA synthesis. All these data suggest that less efficient synthesis of viral RNA, restriction of synthesis of N, F, and M proteins at translational level and thermolability of infectivity are all involved in the suppressed MV production in Vero cells at 39 C.  相似文献   

17.
18.
Alphavirus infection results in the shutoff of host protein synthesis in favor of viral translation. Here, we show that during Semliki Forest virus (SFV) infection, the translation inhibition is largely due to the activation of the cellular stress response via phosphorylation of eukaryotic translation initiation factor 2alpha subunit (eIF2alpha). Infection of mouse embryo fibroblasts (MEFs) expressing a nonphosphorylatable mutant of eIF2alpha does not result in efficient shutoff, despite efficient viral protein production. Furthermore, we show that the SFV translation enhancer element counteracts the translation inhibition imposed by eIF2alpha phosphorylation. In wild-type MEFs, viral infection induces the transient formation of stress granules (SGs) containing the cellular TIA-1/R proteins. These SGs are disassembled in the vicinity of viral RNA replication, synchronously with the switch from cellular to viral gene expression. We propose that phosphorylation of eIF2alpha and the consequent SG assembly is important for shutoff to occur and that the localized SG disassembly and the presence of the enhancer aid the SFV mRNAs to elude general translational arrest.  相似文献   

19.
20.
Herpes simplex virus 1 causes a shutoff of cellular protein synthesis through the degradation of RNA that is mediated by the virion host shutoff (Vhs) protein encoded by the U(L)41 gene. We reported elsewhere that the Vhs-dependent degradation of RNA is selective, and we identified RNAs containing AU-rich elements (AREs) that were upregulated after infection but degraded by deadenylation and progressive 3'-to-5' degradation. We also identified upregulated RNAs that were not subject to Vhs-dependent degradation (A. Esclatine, B. Taddeo, L. Evans, and B. Roizman, Proc. Natl. Acad. Sci. USA 101:3603-3608, 2004). Among the latter was the RNA encoding tristetraprolin, a protein that binds AREs and is known to be associated with the degradation of RNAs containing AREs. Prompted by this observation, we examined the status of the ARE binding proteins tristetraprolin and TIA-1/TIAR in infected cells. We report that tristetraprolin was made and accumulated in the cytoplasm of wild-type virus-infected human foreskin fibroblasts as early as 2 h and in HEp-2 cells as early as 6 h after infection. The amounts of tristetraprolin that accumulated in the cytoplasm of cells infected with a mutant virus lacking U(L)41 were significantly lower than those in wild-type virus-infected cells. The localization of tristetraprolin was not modified in cells infected with a mutant lacking the gene encoding infected cell protein 4 (ICP4). TIA-1 and TIAR are two other proteins that are associated with the regulation of ARE-containing RNAs and that normally reside in nuclei. In infected cells, they started to accumulate in the cytoplasm after 6 h of infection. In cells infected with the mutant virus lacking U(L)41, TIA-1/TIAR accumulated in the cytoplasm in granular structures reminiscent of stress granules in a significant percentage of the cells. In addition, an antibody to tristetraprolin coprecipitated the Vhs protein from lysates of cells late in infection. The results indicate that the Vhs-dependent degradation of ARE-containing RNAs correlates with the transactivation, cytoplasmic accumulation, and persistence of tristetraprolin in infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号