首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of angiotensin II (AII) and 48 h bilateral nephrectomy on the 3H-norepinephrine (3H-NE) and 3H-NE metabolites release in vitro was studied in slices of male Wistar rat hypothalamus and medulla oblongata. The total 3H outflow of radioactivity was higher in AII exposed tissues than in nephrectomized ones of both organs. The 3H-NE and 3H-NE metabolites remanent radioactivity in the tissues increased in both the soluble cytoplasmatic fractions and the granular vesicle ones, in the two organs from the nephrectomized rats. The ratio between granular and cytoplasmatic NE and granular and cytoplasmatic radioactive metabolites was not noticeably altered in any of the groups. The release of 3H-NE caused by AII and the opposite effect by nephrectomy, agree with the inverse relationship demonstrated between endogenous NE content in the central nervous system and AII plasmatic levels. AII might act on presynaptic NE receptors of the cellular membrane. The relationship between the renin-AII system and the central nervous system catecholamines could be involved in the control of development and maintenance of the renal arterial hypertension.  相似文献   

2.
Effects of angiotensin II (AII) on norepinephrine (NE) catabolism in hypothalamus and medulla oblongata of male rats were studied. 3H-NE uptake, 3H-NE/3H-NE metabolites ratio (NE/MET) and monoamineoxidase (MAO) activity were measured in vitro in both organs. Lack of circulating AII was elicited by means of 48 h bilateral nephrectomy. Pargyline and bilateral nephrectomy increased NE uptake and NE/MET ratio, while in nephrectomized plus pargyline treated groups and additive effect on these results was observed in both organs. All decreased the NE/MET ratio. Pargyline reversed the latter effects of AII. The peptide increased MAO activity in both organs, while bilateral nephrectomy decreased the activity of the enzyme. The results showed that AII modulates NE catabolism by means of MAO activity, eventually at the presynaptic noradrenergic ending sites in the central nervous system.  相似文献   

3.
The effects of the bilateral nephrectomy and acute hypotension caused by the cava vein ligature on the norepinephrine (NE) concentration in hypothalamus and medulla oblongata and on the plasma renin activity were studied in male rats. NE increased and plasma renin activity decreased in hypothalamus in 24 h nephrectomized rats with or without the ligatures of the cava vein. NE also decreased in medulla of groups with the ligatures only. The mean arterial pressure, did not correlate with the NE or plasma renin activity levels. The modifications of the NE in the central nervous system showed an inverse relationship with plasma renin activity and this, could be due to changes in the NE uptake and/or release caused by the plasma renin activity alterations. NE modifications do not seem to be caused directly through reflex of the arterial pressure.  相似文献   

4.
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston , 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.  相似文献   

5.
The metabolism of nitrosoproline (NPRO) was re-investigated in uni- and bilaterally nephrectomized rats that have reduced or absent ability to excrete urine. About 1% of the administered radioactivity from L-[U-14C]-NPRO appeared as 14CO2 in the expired air and the production of 14CO2 was time-dependent over a period of 23 h. As compared with sham-operation, uni- or bilateral nephrectomy did not significantly increase the amount of NPRO metabolism, though urinary excretion of radioactivity was decreased in the unilaterally nephrectomized animals. In microsome-mediated and in vitro enzyme-free (Udenfriend-hydroxylating) systems covalent binding of [2,3,4,5-3H]NPRO to exogenous calf thymus DNA was demonstrated. The above findings confirm that in vivo metabolism of NPRO is possible, albeit, to a very small extent.  相似文献   

6.
Radioiodinated m-iodobenzylguanidine ([125I]MIBG) and tritiated norepinephrine ([3H]NE]) uptake and release were compared, in different regions of the brain of the rat. The classification of the regions according to uptake was the same for both tracers: striatum > hypothalamus > hippocampus > cortex > brainstem. Tetrabenazine (TBZ), a granular monoamine uptake inhibitor reduced the uptake in the different regions. The inhibition rate was higher for [3H]NE uptake than for [125I]MIBG. The spontaneous release was the same for [125I]MIBG and [3H]NE and was the lowest in the striatum. The K+ stimulated release of [3H]NE was more complete than the release of [125I]MIBG and was the most important in the striatum. From these results, it is inferred that MIBG enters the brain tissue via NE uptake mechanisms. It appears that MIBG is stored in the chromaffin granules, as NE, but also in the cytoplasm. A modified molecule derived from MIBG which would cross the blood-brain barrier, would then appear as a potential scintigraphic marker of monoamine uptake, storage and release.  相似文献   

7.
—During anoxia induced by the administration of potassium cyanide, [U-14C]glucose was injected intraperitoneally into adult mice and they were decapitated at 5, 15 and 30 min after the injection. After freeze-drying in vacuo, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, cerebellar hemisphere, caudate nucleus, thalamus, hypothalamus and medulla oblongata were investigated (by macroautoradiography and GLC separation) and compared with those obtained under normal conditions. (1) During anoxia, autoradiographical densities in the thalamus and medulla oblongata were higher than that in the cerebral neocortex and caudate nucleus. (2) Among specific radioactivities (d.p.m./μmol) of free amino acids, alanine gave the highest value during anoxia, except in the cerebellar hemisphere and hypothalamus at 5 min and the medulla oblongata at 30 min. (3) During anoxia, the specific radioactivities of alanine and glycine in each brain region did not significantly decrease at 15 and 30 min compared with those under normal conditions. During anoxia, the specific radioactivity of glutamate + glutamine in the cerebellar hemisphere and hypothalamus did not significantly decrease compared with the normal conditions, while that of GABA, aspartate + asparagine and glutamate + glutamine in the cerebral neocortex, caudate nucleus, thalamus and medulla oblongata showed an increase. (4) The percentage decrease of glutamate + glutamine and aspartate + asparagine at 5 and 15 min was highly significant in the cerebral neocortex and caudate nucleus.  相似文献   

8.
In the hypothalamus, septum, pons with medulla, and hippocampus regions of rat brain, the level of radioactivity of [3H]noradrenaline and of five of its metabolites were determined up to 6 h after intraventricular injection of the tritiated amine. The following main results were found: In anterior hypothalamus and septum, the [3H]noradrenaline level declined in two phases. Similar turnover curves were obtained for the primary deaminated metabolites, with almost the same final half-lives as for [3H]noradrenaline. The level of the initial methylation product, normetanephrine, also showed a biphasic decline, which did not correspond to that of [3H]noradrenaline but rather was faster throughout the experiment. The final metabolites (i.e., the glycol sulfates) reached maximal levels in hypothalamus and septum earlier than in other regions. Thereafter, their levels declined with almost similar rates in all areas tested, but always faster than the [3H]noradrenaline level. The following conclusions were drawn: In areas rich in catecholaminergic nerve terminals, there seems to be a site, in addition to the vesicular storage pool, that accumulates exogenous noradrenaline and then releases it with relatively short half-lives. The contents of primary deaminated metabolites followed the turnover of [3H]noradrenaline at both sites. Exogenous [3H]noradrenaline seems to be methylated at two extraneuronal sites, which are distinguished by the rates of subsequent deamination. The size of the pool of slowly deaminated [3H]normetanephrine that is formed immediately after [3H]noradrenaline injection determined the apparent turnover of this product throughout the experiment and, thus, like the final metabolites, reflects for several hours the initial degradation of the unstored [3H]noradrenaline, rather than the metabolism of the stored amine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of the infusion of Saralasin and SQ 20881, two drugs that inhibit the renin-angiotensin system, on the norepinephrine (NE) concentration in hypothalamus and medulla oblongata were studied in male Wistar rats. NE content increased in hypothalamus in response to both drugs, without changes in medulla oblongata catecholamine concentration. These results showed that the NE concentration of certain areas of the central nervous system can be modified, in a short time, by the inhibition of the renin-angiotensin system. Results observed after the infusion of Saralasin could indicate that the receptors, on which the angiotensin acts to produce this alteration, are similar to those of the peripheral blood vessels.  相似文献   

10.
The effects of ovariectomy and the injection of sexual hormones on the norepinephrine (NE) content in different areas of the central nervous system were studied in the Wistar female rat. The ovariectomy increased the NE in the hypothalamus, cerebellum and the medulla oblongata. The estradiol benzoate did not modify the NE levels in the ovariectomized rats. Progesterone decreased the NE in the hypothalamus and testosterone dipropionate increased it in the brain hemispheres. It seems possible that the hypersecretion of FSH would increase the synthesis of NE in castrated animals through the potentation of the tyroxine-hydroxylase activity. Increase in testosterone synthesis was probably responsible for the raise in NE levels. The progesterone moderated the effects of the ovariectomy, probably through feed-back mechanisms involving the hypothalamic-hypophyseal tract.  相似文献   

11.
To determine if macrophages express receptors for peptide antigens, guinea pig peritoneal exudate cells (PEC) were examined for their uptake of the octapeptide angiotensin II (AII). PEC were incubated with [3H]AII, with or without nonradioactive AII as a cold inhibitor, for varying lengths of time before harvesting to determine the cell-associated [3H]AII counts per minute. The PEC-associated [3H]AII increased from 90 to 120 min of incubation, then plateaued on additional incubation to 3.5 hr. Inclusion of nonradiolabeled AII into the culture decreased the cell-associated [3H]AII by 80 to 90% at all time points. The uptake of [3H]AII was temperature-sensitive, with maximum cell-associated [3H]-AII occurring at 37 degrees C and reduced uptake occurring at 4 degrees C. The association of [3H]AII with PEC was specific and saturable, and the inhibitory dose for reducing the cell-associated [3H]AII by 50% with nonradiolabeled AII was around 6 X 10(-6) M. Various AII analogs were also employed as inhibitors to determine the fine specificity of [3H]AII binding, and only those analogs with nonaromatic amino acid substitutions for the carboxyl terminal Phe8 showed reduced inhibitory activity, indicating that Phe8 is important for binding. Scatchard analysis of binding indicated that two classes of receptors interacted with AII: a low number of receptors with Ka approximately equal to 3.5 X 10(8) M-1, and a large number of relatively low affinity of binding showing a Ka approximately equal to 5 X 10(5) M-1. The cellular binding activity was associated with isolated PEC plasma membranes, and after density gradient fractionation of solubilized membranes, AII binding activity was primarily associated with molecules of m.w. of around 50,000. PEC were separated into macrophages and lymphocytes by adherence, and all of the [3H]AII binding activity was associated with the macrophage-enriched cells. These results show that macrophages express specific receptors for AII and related peptides that are responsible for most of the uptake of AII by macrophages. We discuss the relevance of this receptor for the immunologically important uptake of AII by macrophages, and a potential physiologic role in angiotensin-converting enzyme production.  相似文献   

12.
Angiotensin II Inactivation Process in Cultured Mouse Spinal Cord Cells   总被引:3,自引:2,他引:1  
The pattern of hydrolysis of [3H]angiotensin II ( [3H]AII; 20 nM) by intact cells was studied on cultured mouse spinal cord cells. Degradation products were identified by HPLC analysis after incubation for 2 h at 37 degrees C. In the absence of peptidase inhibitors, 70% of [3H]AII was degraded, and the main labeled metabolite was [3H]tyrosine (40% of total radioactivity). Minor quantities of [3H]AII1-5 and [3H]AII4-8 were formed. Results obtained in the presence of various inhibitors indicate that several enzymes were involved in the AII-hydrolyzing process. Dipeptidyl aminopeptidase III (EC 3.4.14.4) could play a critical role, as suggested by the formation of [3H]Val3-Tyr4 and [3H]-Tyr4-Ile5 in the presence of bestatin (2 X 10(-5) M). This hypothesis was confirmed by the potency of dipeptidyl amino-peptidase III inhibitors to inhibit both [3H]AII hydrolysis and formation of these 3H-labeled dipeptides. An arylamidase-like activity could also be participating in [3H]AII hydrolysis, because higher concentrations of bestatin (10(-4) M) in association with dipeptidyl aminopeptidase III inhibitors totally inhibited [3H]tyrosine formation, increased protection of [3H]AII and [3H]AII1-7 formed, and provoked a slight accumulation of [3H]AII2-8. These results suggest that the formation of [3H]AII2-8 is due to the action of a bestatin-insensitive acidic aminopeptidase and that the Pro7-Phe8 cleavage is also a step of AII hydrolysis, resulting from the action of an unidentified peptidase different from prolyl endopeptidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.  相似文献   

15.
Rats received a solution of sodium barbitone as their only drinking fluid for 33 and 42–44 weeks. In three groups (A3, A12 and A30) the barbitone solution was withheld and replaced by water 3, 12 and 30 days respectively before death. Two other groups consisted of animals drinking barbitone until death (B) and untreated controls (C). Abstinence convulsions were recorded by jiggle cages. Thirty nmol of tritium-labelled choline ([3H]Ch) were injected i.v. and the rats were killed by decapitation 1 min later. A significantly higher content of tritium-labelled acetylcholine ([3H]ACh) was found in the cerebellum + medulla oblongata + midbrain of rats receiving barbitone until death (group B) (+22%) and abstinent for 3 days (+54%) (group A3) compared with group C. The [3H]ACh content was also significantly increased in the hippocampus + cortex of rats abstinent for 3 days (+23%). In the striatum no significant effect on [3H]ACh content was found in any of the groups. The ratio [3H]ACh/[3H]Ch was significantly increased in the cerebellum + medulla oblongata + midbrain of rats in group B and A3 and in the hippocampus + cortex in group A3. These results might indicate an increased turnover of ACh. The effect of long-term barbitone treatment on the enzyme activities of brain choline acetyltransferase and acetylcholinesterase was also studied but no significant effect was found.  相似文献   

16.
Summary Light-microscopic autoradiographs of the adrenal medulla at various intervals after the intravenous injection of [3H] 5-HTP, [3H] 5-HT, [3H] noradrenaline and [3H] adrenaline have been studied. The distribution of silver grains following [3H] 5-HTP uptake was found to be uniform over each of the two main cell populations, adrenaline-storing (A) cells and noradrenaline-storing (NA) cells in the adrenal medulla, but A cells were twice as active as NA cells in incorporating the isotope, a situation very similar to that found after [3H] dopa uptake. 5-HT administration resulted in a pattern resembling the distribution of [3H] noradrenaline uptake, with A cells being 4 or 5 times more active than NA cells and a gradient of activity from the periphery of the medulla inwards. However, the time-course for the loss of radioactivity was not the same for both amines: levels of 5-HT activity were not significantly reduced after one week whereas the degree of [3H] noradrenaline labelling after one week was less than 10% of that at one hour. Thus 5-HT may be bound to sites in the adrenal medulla normally occupied by noradrenaline but it would appear that the release mechanism is different. There was no evidence of 5-HT uptake by adrenal nerve endings.  相似文献   

17.
The effects of bromoacetylaminomenthylnorepinephrine (BAAN) on the sodium-dependent, high-affinity norepinephrine (NE) uptake system in rat brain synaptosomes and CNS neuronal cultures were investigated. BAAN inhibited [3H]NE uptake into synaptosomes in a dose- and time-dependent manner (IC50, 6.5 microM). Pretreatment of cortical synaptosomes or neuronal cells with BAAN alone, followed by washing to remove free drug, reduced the Vmax but did not alter the Km value for [3H]NE uptake. The BAAN-induced reduction in Vmax was attenuated by concurrent pretreatment with desipramine and blocked by the reaction of BAAN with dithiothreitol or cysteine. In contrast, BAAN was 19-fold less potent at inhibiting [3H]dopamine uptake in striatal synaptosomes, and no change in the Vmax or Km value for [3H]dopamine uptake was observed after a pretreatment with BAAN followed by washing. Furthermore, the irreversible beta-antagonist, bromoacetylalprenololmentane, was equipotent to BAAN for inhibiting [3H]NE uptake into cortical synaptosomes, but did not alter the Vmax or Km for [3H]NE after pretreatment. In neuronal cultures, BAAN inhibited sodium-dependent uptake of [3H]NE (IC50, 5.6 microM) with no effect on sodium-independent uptake. After pretreatment of cultures with 30 microM BAAN followed by washing, there was a 74% decrease in the Vmax for [3H]NE uptake. Following a 24-h lag period, uptake recovered to the control level within 48 h; however, recovery was completely blocked by cycloheximide. The data indicate that BAAN irreversibly binds to the [3H]NE uptake system in both CNS synaptosomes and neuronal cultures and may be a useful probe for studying the turnover of the [3H]NE uptake system.  相似文献   

18.
1. Hypertension can be induced by some types of stress in the rat. The aim of the present work was to study the putative implication of brain norepinephrine (NE) in blood pressure increase due to social deprivation stress. 2. The effects of 6-hydroxydopamine (6-OHDA) lesions of the ventral noradrenergic bundle (VNEB) on the hypertensive response induced by brief social deprivation stress in young Wistar rats were examined. NE, dopamine (DA), and epinephrine (EPI) levels were measured by HPLC coupled with electrochemical detection in two brain areas (hypothalamus and medulla oblongata) relevant for blood pressure regulation. 3. VNEB lesions prevented the hypertensive response produced by isolation. Twelve or 20 days after 6-OHDA administration, NE and EPI but not DA levels decreased in the hypothalamus of the lesioned rats. In contrast, no catecholamine changes were detected in medulla oblongata. 4. These data suggest that the VNEB plays a role in the triggering of the hypertensive response induced by social deprivation stress in young Wistar rats.  相似文献   

19.
During the first 48h of compensatory renal hypertrophy induced by unilateral nephrectomy, RNA content per cell increased by 20-40%. During this period, rates of RNA synthesis derived from the rates of labelling of UTP and RNA after a single injection of [5-(3)H]uridine showed no change in the rate of RNA synthesis (3.1nmol of UTP incorporated into RNA/min per mg of RNA). ATP and ADP pools were not changed. The rate of RNA synthesis was considerably in excess of the increment of total RNA appearing in the kidneys. With [5-(3)H]uridine as label, only continuous infusion for 24h could produce an increase (60%) in the specific radioactivity of renal rRNA in mice with contralateral nephrectomies. With a single injection of [methyl-(3)H]methionine used to identify methyl groups inserted into newly synthesized rRNA, the specific radioactivity of this rRNA was unchanged 5h after contralateral nephrectomy, increased by 60% at 9-48h, and returned to normal values at 120h. Most RNA synthesized in both nephrectomized and sham-nephrectomized mice has a short half-life. Since total cellular RNA content increases in compensatory hypertrophy despite unchanged rates of rRNA synthesis, the accretion of RNA might involve conservation of ribosomal precursor RNA or a change in rate of degradation of mature rRNA.  相似文献   

20.
Enzymes are present in the primate brain that convert testosterone into 17 beta-hydroxy-5 alpha-androstan-3-one (dihydrotestosterone), estradiol-17 beta and 4-androstene-3,17-dione. To identify the metabolites of testosterone that accumulate in cell nuclei obtained from different regions of the brain, 9 adult castrated male rhesus monkeys were injected with 5 mCi [3H]testosterone as an intravenous bolus. After 1 h, brains were rapidly removed and the left halves were used for autoradiography while the right halves were dissected to provide 14 samples. Radioactive metabolites in cell nuclei were identified by high-performance liquid chromatography (HPLC) and by repeated recrystallization. In autoradiograms of brain, most of the labeled neurons were in the hypothalamus, preoptic area and amygdala. These three regions also had the highest levels of radioactivity. The major form of this radioactivity was [3H]estradiol-17 beta (Type I tissues) and the major radioactive androgen present was [3H]testosterone. In all other brain regions and pituitary gland, the major form of radioactivity was unchanged [3H]testosterone (Type II tissues). In genital tract structures, [3H]dihydrotestosterone predominated (Type III tissues). These results suggested that, in contrast to its actions on genital tract structures, testosterone acts on neuronal nuclei mainly in unmetabolized form or after conversion to estradiol-17 beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号