首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin-I generating activity has been detected in homogenates of arterial tissue but it remains unclear whether this enzymatic activity results from the presence of renin itself or from the action of other proteases such as cathepsin D. In an assay system employing anephric dog plasma as substrate and buffered to pH 7.4, we detected angiotensin-I generating activity in homogenates of canine aortic smooth muscle cells. This enzymatic activity was in large part inhibitable by renin-specific antisera raised to pure canine renal renin. Immunofluorescent study of cultured arterial smooth muscle cells was also performed using renin specific antiserum. Granular cytoplasmic immunofluorescence was detected when specific antirenin serum was used but not when preimmune serum was employed. The addition of pure canine renin to the renin antiserum during staining suppressed the granular immunofluorescence confirming the specificity of staining. Finally, biosynthetic radiolabelling studies were performed. Immunoprecipitation of newly synthesized proteins with antirenin serum and staphylococcal protein A followed by gel electrophoresis and autoradiography demonstrated the synthesis of an immunoreactive protein with the molecular weight of renin. Pretreatment of the antirenin serum with pure canine renin resulted in the disappearance of this immunoreactive protein band. Thus these studies provide multiple lines of evidence to indicate the insitu synthesis of renin by vascular smooth muscle cells.  相似文献   

2.
Summary Smooth muscle cells were isolated enzymatically from adult human arteries, grown in primary culture in medium containing 10% whole blood serum, and studied by transmission electron microscopy and [3H]thymidine autoradiography. In the intact arterial wall and directly after isolation, each smooth muscle cell had a nucleus with a wide peripheral zone of condensed chromatin and a cytoplasm dominated by myofilament bundles with associated dense bodies. After 1–2 days of culture, the cells had attached to the substrate and started to spread out. At the same time, a characteristic fine-structural modification took place. It included nuclear enlargement, dispersion of the chromatin and formation of large nucleoli. Moreover, myofilament bundles disappeared and an extensive rough endoplasmic reticulum and a large Golgi complex were organized in the cytoplasm. This morphological transformation of the cells was completed in 3–4 days. It was accompanied by initiation of DNA replication and mitosis.The observations demonstrate that adult human arterial smooth muscle cells, when cultivated in vitro, pass through a phenotypic modulation of the same type as arterial smooth muscle cells from experimental animals. This modulation gives the cells morphological and functional properties resembling those of the modified smooth muscle cells found in fibroproliferative lesions of atherosclerosis. Further studies of the regulation of smooth muscle phenotype and growth may provide important clues for a better understanding of the pathogenesis of atherosclerosis.  相似文献   

3.
Quiescent, serum-starved human aortic smooth muscle cells were restimulated with 20% foetal calf serum in Dulbecco's modified Eagle medium, in the presence and absence of beta-carotene, canthaxanthin, zeaxanthin, lycopene, lutein or beta-cryptoxanthin, at final concentrations up to 23 microM. Concentration-dependent inhibition of DNA synthesis, measured by [methyl-3H]thymidine incorporation, was observed for the carotenoids, except for canthaxanthin and lutein which had no effect. Lycopene was the most potent of the carotenoids tested. The results suggest that antiproliferative effects of dietary carotenoids might be of significance in vivo.  相似文献   

4.
5.
The characterization of human uterine smooth muscle cells in culture   总被引:2,自引:0,他引:2  
Primary cultures initiated from normal human uterine endometrium after total enzymatic dissociation contained epithelioid cells and smooth muscle cells. The smooth muscle cells were subsequently isolated by differential trypsinization and grown in culture for 36 +/- 4 generations. Ultrastructural examination of log and post-confluent cultures of cells at low and high population doubling levels revealed characteristics similar to those of published reports on other smooth muscle cells studied in vivo and in vitro. Among the common features present were: (a) abundant bundles of 60--70 A myofilaments; (b) branched mitochondria; (c) stacks of cisternae of rough endoplasmic reticulum; (d) caveolae intracellulares; (e) nexuses. Other features included ovoid nuclei, a well developed Golgi apparatus and abundant free ribosomes. The subcultured cells exhibited features of dedifferentiation in the log phase of growth and at post-confluency. However, the post-confluent cells showed characteristics indicating redifferentiation back towards their in vivo morphology. Smooth muscle cells isolated from endometrial curettings may provide a useful model for biochemical and pharmacological studies of a cell type derived from a hormonal target tissue as the cells "age" in culture.  相似文献   

6.
Isolation and culture of human intestinal smooth muscle cells   总被引:3,自引:0,他引:3  
Intestinal smooth muscle cells were isolated from human bowel and maintained in culture through several passages. These cells were obtained by enzyme digestion of slices taken from the circular layer of the muscularis propria of human jejunum. When subcultured, they initially flattened out and then began proliferating after 3 days. After 3 weeks in culture, they began aggregating into ridges. Fluorohistochemical staining revealed numerous prominent actin stress fibers. When these cells were exposed to the C-terminal octapeptide of cholecystokinin they contracted in a dose-dependent fashion. The availability of human intestinal smooth muscle cells in culture will considerably enhance our ability to study the contractile, proliferative and connective tissue responses of the smooth muscle of the human gastrointestinal tract.  相似文献   

7.
The proliferation of vascular smooth muscle cells is important in the pathogenesis of many vascular diseases. Reactive oxygen species (ROS) produced by NADPH oxidases in smooth muscle cells have been shown to participate in signaling cascades regulating proliferation induced by platelet-derived growth factor (PDGF), a powerful smooth muscle mitogen. We sought to determine the role of Nox5 in the regulation of PDGF-stimulated human aortic smooth muscle cell (HASMC) proliferation. Cultured HASMC were found to express four isoforms of Nox5. When HASMC stimulated with PDGF were pretreated with N-acetyl cysteine (NAC), proliferation was significantly reduced. Proliferation induced by PDGF was also heavily dependent on JAK/STAT activation, as the JAK inhibitor, AG490, was able to completely abolish PDGF-stimulated HASMC growth. Specific knockdown of Nox5 with a siRNA strategy reduced PDGF-induced HASMC ROS production and proliferation. Additionally, siRNA to Nox5 inhibited PDGF-stimulated JAK2 and STAT3 phosphorylation. ROS produced by Nox5 play an important role in PDGF-induced JAK/STAT activation and HASMC proliferation.  相似文献   

8.
Summary Polyclonal antibodies to chicken gizzard calponin were used to localize calponin and determine calponin expression in rabbit and human aortic smooth muscle cells in culture. Calponin was localized on the microfilament bundles of cultured smooth muscle cells. Early in primary culture,ccalponin staining was accumulated preferentially in the central part of the cell body. With time in culture, the number of calponin-negative smooth muscle cells increased while the distribution of calponin in calponin-positive cells became more even along the stress fibers. Calponin content and the calponin/actin ratio decreased about 5-fold in rabbit aortic smooth muscle cells during the first week in primary culture and remained low in proliferating cells. The same tendency in calponin expression was observed when human vascular smooth muscle was studied. On cryostat sections of human umbilical cord, calponin antibodies mainly stained vessel walls of both the arteries and veins, although less intensive labelling was also observed in non-vascular tissue. When primary isolates of human aortic intimal and medial smooth muscle cells were compared with corresponding passaged cultures, it was found that calponin content was reduced about 9-fold in these cells in culture and was similar to the amount of calponin in endothelial cells and fibroblasts. Thus, high calponin expression may be used as an additional marker of vascular smooth muscle cell contractile phenotype.  相似文献   

9.
The vasodilating peptide adrenomedullin (AM) has been reported to regulate vascular tone as well as proliferation and differentiation of various cell types in an autocrine/paracrine manner. Our study was designed to investigate the effect of AM on Ang II-induced contraction on human aortic smooth muscle cells (HASMC) in vitro, evaluating the signal pathways involved. Our findings indicate that AM was able to inhibit HASMC Ang II-induced contraction (IC50 19 nM). AM stimulated cAMP production in a dose-dependent fashion as well. SQ 22.536, an adenylate cyclase inhibitor, and KT5720, a PKA inhibitor, blunted the AM effect, suggesting that it was mediated by the activation of the cAMP transduction pathway. Our results suggest that AM plays a role in the regulation of HASMC contraction by antagonizing the Ang II effects and may be involved in conditions of altered regulation of the blood vessels.  相似文献   

10.
The etiology of the atherosclerosis that occurs in diabetes mellitus is unclear. Adenosine has been shown to inhibit growth of rat aortic smooth muscle cells. Nucleoside transporters play an integral role in adenosine function by regulating adenosine levels in the vicinity of adenosine receptors. Therefore, we studied the effect of 25 mM d-glucose, which mimics hyperglycemia of diabetes, on adenosine transport in cultured human aortic smooth muscle cells (HASMCs). Although RT-PCR demonstrated the presence of equilibrative nucleoside transporter-1 (ENT-1) and ENT-2 mRNA, functional studies revealed that adenosine transport in HASMCs was predominantly mediated by ENT-1 and inhibited by nitrobenzylmercaptopurine riboside (NBMPR, IC(50) = 0.69 +/- 0.05 nM). Adenosine transport in HASMCs was increased by >30% after treatment for 48 h with 25 mM d-glucose, but not with equimolar d-mannitol and l-glucose. Kinetic studies showed that d-glucose increased V(max) of adenosine transport without affecting K(m). Similarly, d-glucose increased B(max) of high-affinity [(3)H]NBMPR binding, while the dissociation constant (K(d)) was not changed. Consistent with these observations, 25 mM d-glucose increased mRNA and protein expression of ENT-1. Treatment of serum-starved cells with the selective inhibitors of MAPK/ERK, PD-98059 (40 microM) and U-0126 (10 microM), abolished the effect of d-glucose on ENT-1. We conclude that d-glucose upregulates the protein and message expression and functional activity of ENT-1 in HASMCs, possibly via MAPK/ERK-dependent pathways. Pathologically, the increase in ENT-1 activity in diabetes may affect the availability of adenosine in the vicinity of adenosine receptors and, thus, alter vascular functions in diabetes.  相似文献   

11.
Monoclonal antibodies specific for surface antigens of target cells are supposed to be good vectors for drug transport. It is suggested using monoclonal antibodies that distinguish between smooth muscle and endothelial cells as vectors for directed drug transport to injured (denuded) areas of the blood vessel wall. The following in vitro model was used: monoclonal antibodies were added to cultured vascular smooth muscle or endothelial cells, this was followed by the addition of erythrocytes conjugated with rabbit antimouse antibodies. Spectrometry and scanning electron microscopy were used to assess the results. The erythrocytes, possible containers of drugs, under the experimental conditions were found to bind only to smooth muscle cells. The data obtained suggest that antibody IIG10 discriminating between smooth muscle and endothelial cells provides a specific tool for erythrocyte delivery to smooth muscle cells.  相似文献   

12.
Smooth muscle cells (SMC) from various arterial origins have been successfully maintained in culture. The present study evaluates the proliferative activity of aortic and mesenteric SMC in culture. Aortic and mesenteric SMC were obtained from male Wistar rats by explant and enzyme digestion techniques, respectively. Vascular SMC obtained by either method exhibited a characteristic hill-and-valley growth pattern in culture after confluence and were positively labelled with either anti-smooth muscle actin or myosin by an indirect immunofluorescent method. The rate of incorporation of thymidine into DNA and cell number counting were used as indices of proliferation in vitro. Vascular SMC from passages 4-33 were first synchronized with either Dullbecco's Modified Eagle's Medium (DME) or Ham's F-12 medium, supplemented with insulin-transferring-selenium (ITS), for 72 hours. SMC were then stimulated with 10% bovine serum for either 24 or 72 hours with the former processed for scintillation counting, the latter for cell number determination. The incorporation of tritiated thymidine into DNA following a 2 hour incubation was determined by scintillation counting after perchloric acid extraction. In terms of cell numbers, proliferative responses to bovine serum were determined by Coulter counting. Autoradiography was also carried out in some cultures to determine both thymidine and mitotic labelling indices. The rate of thymidine incorporation in aortic cells was 2-3 fold higher than in mesenteric cells. Aortic and mesenteric SMC lines exhibited similar cell cycle intervals in terms of total duration and individuals cycle parameters. However, the total thymidine index was higher in the aortic than mesenteric SMC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Both insulin-like growth factor binding protein-3 (IGFBP-3) and transforming growth factor-beta (TGF-beta) have been separately shown to have cell-specific growth-inhibiting or growth-potentiating effects. TGF-beta stimulates IGFBP-3 mRNA and peptide expression in several cell types, and TGF-beta-induced growth inhibition and apoptosis have been shown to be mediated through the induction of IGFBP-3. However, a link between the growth stimulatory effects of TGF-beta and IGFBP-3-induction has not been shown. In this study, we investigated the role of IGFBP-3 in mediating TGF-beta1-induced cell growth using human airway smooth muscle (ASM) cells as our model. TGF-beta1 (1 ng/ml) treatment induced a 10- to 20-fold increase in the levels of expression of IGFBP-3 mRNA and protein. Addition of either IGFBP-3 or TGF-beta1 to the growth medium resulted in an approximately twofold increase in cell proliferation. Coincubation of ASM cells with IGFBP-3 antisense (but not sense) oligomers as well as with an IGFBP-3 neutralizing antibody (but not with control IgG) blocked the growth induced by TGF-beta1 (P < 0.001). Several IGFBP-3-associated proteins were observed in ASM cell lysates, which may have a role in the cellular responses to IGFBP-3. These findings demonstrate that IGFBP-3 is capable of mediating the growth stimulatory effect of TGF-beta in ASM cells.  相似文献   

14.
In severe or chronic asthma, there is an increase in airway smooth muscle cell (ASMC) mass as well as an increase in connective tissue proteins in the smooth muscle layer of airways. Transforming growth factor-beta (TGF-beta) exists in three isoforms in mammals and is a potent regulator of connective tissue protein synthesis. Using immunohistochemistry, we had previously demonstrated that ASMCs contain large quantities of TGF-beta1-3. In this study, we demonstrate that bovine ASMC-derived TGF-beta associates with the TGF-beta latency binding protein-1 (LTBP-1) expressed by the same cells. The TGF-beta associated with LTBP-1 localizes TGF-beta extracellularly. Furthermore, plasmin, a serine protease, regulates the secretion of a biologically active form of TGF-beta by ASMCs as well as the release of extracellular TGF-beta. The biologically active TGF-beta released by plasmin induces ASMCs to synthesize collagen I in an autocrine manner. The autocrine induction of collagen expression by ASMCs may contribute to the irreversible fibrosis and remodeling seen in the airways of some asthmatics.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.  相似文献   

16.
Adult mammalian cardiac muscle cells in culture   总被引:4,自引:0,他引:4  
A C Nag  M Cheng 《Tissue & cell》1981,13(3):515-523
Adult rat cardiac muscle cells were isolated from the ventricle by a retrograde perfusion technique through the aorta (Nag and Zak, 1979). These single, isolated cardiac muscle cells were cultured for 4 weeks. Throughout the culture period, a small number of muscle cells retained their cylindrical shape, while the rest exhibited alterations in shape and size assuming a flattened body of irregular shape with pseudopodia-like processes and thereby resembling embryonic/neonatal cardiac muscle cells in culture. Transmission electron microscopy revealed that the cylindrical muscle cells contained compactly arranged myofibrils and cellular organelles, similar to those of freshly isolated and in vivo cells. A few irregularly shaped cardiac muscle cells were similar to the cylindrical cells in their internal structural organization. Most of the irregular cells exhibited less myofibrillar content than that of the freshly dissociated and in vivo cells. Myofibrils in the irregular cells were widely spaced and myofilament of some of the myofibrils were loosely bunched. In addition, scattered patches of myofibrils and free myofilaments were observed in many of these cells. The internal structural organization of these irregularly shaped cardiac muscle cells closely resembled the embryonic and neonatal cardiac muscle cells in vitro and in vivo. Most of the muscle cells in culture continued to contract spontaneously, and electron microscope studies clearly indicated that they underwent dedifferentiation. Autoradiography studies demonstrated that the cylindrical and irregularly shaped cardiac muscle cells underwent DNA synthesis and cell division in culture.  相似文献   

17.
Rossi F  Bertone C  Petricca S  Santiemma V 《Peptides》2006,27(11):2935-2941
The vasodilating peptide adrenomedullin has been reported to regulate vascular tone as well as proliferation and differentiation of various cell types in an autocrine/paracrine manner. Conflicting data have been reported on the adrenomedullin (AM) effect on vascular smooth muscle cell proliferation, a process involved in the progression of vascular remodeling and atherosclerotic lesion. In this paper we investigate the effect of AM on proliferation of human aorta smooth muscle cell (HASMC). AM showed a potent dose-dependent inhibiting effect on angiotensin II (AngII) induced-proliferation and a stimulatory effect on proliferation of quiescent cells. The cAMP/PKA pathway was involved in the AM inhibitory effect of AngII-induced proliferation in HASMC. PI3K/Akt and ERK pathways were involved in the proliferative effect exerted by AM per se. Our results suggest that AM plays a role in the regulation of HASMC growth antagonizing the AngII effect and may be involved in conditions of altered regulation of the blood vessels.  相似文献   

18.
《Life sciences》1994,55(1):PL15-PL18
The effects of elevated glucose and Eicosapentaenoic acid (EPA, 20:5) on myoinositol uptake in human aortic smooth muscle cells (HASMC) were evaluated. Myo-inositol incorporation into HASMC was dependent on an active transport system via Na+−K+ ATPase activity based on the results with Na+ deprivation and Ouabain (5 mM). Although glucose (27.5, 55 mM) inhibited 2-[3H] myo-inositol uptake, the addition of EPA (3×104 M) prevented glucose-mediated inhibition. In addition, EPA potentiated Na+−K+ ATPase activity of HASMC. Since EPA decrease glucose-mediated inhibition of myo-inositol uptake, this agent might ameliorate aortic smooth muscle cell function associated with diabetes.  相似文献   

19.
Lipopolysaccharide (LPS) is a potent activator of cells of the immune and inflammatory systems, including macrophages, monocytes, and endothelial cells (EC). Toll-like receptor 4 (TLR4) has been identified as the primary receptor for LPS. Vascular smooth muscle cells (VSMCs) likely contribute significantly to the inflammation induced by low-level LPS in patients who are at risk for atherosclerosis. Previous study indicated that functional TLR4 was present in VSMCs. However, it remains unclear whether low levels of commercial LPS preparations can affect TLR4 expression in early stage. Here Real-time quantitative PCR analysis was used to detect TLR4 mRNA expression; Immunofluorescence, Western blot analysis and flow cytometry were used to examine TLR4 protein expression. It was shown that TLR4 was present in Human Aortic Smooth Muscle Cells (HASMCs). LPS can up-regulate TLR4 mRNA and protein expression in HASMCs in dose- and time-dependent manner. These data indicate that LPS regulate TLR4 expression in HASMCs.  相似文献   

20.
Summary Smooth muscle cells (SMC) were enzymatically isolated from the myometrium of adult rat and human uteri and grown in primary culture. Cell fine structure and cytoskeletal organization were followed by transmission electron microscopy and cytochemical demonstration of actin filaments, microtubules and intermediate filaments, and initiation of DNA synthesis was investigated by thymidine autoradiography. During the first few days in culture the cells spread out on the substrate and went through a morphological transformation including loss of myofilaments followed by formation of an extensive rough endoplasmic reticulum and a large Golgi complex. Actin filaments aggregated in stress fibers spanning the entire length of the cells and microtubules and intermediate filaments formed a radiating system originating in the juxtanuclear region. In vivo, the SMC contained intermediate filaments reactive for desmin, but as early as the first day of culture expressed vimentin as well. For five days at least, all cells remained positive for both proteins, but the staining for desmin decreased while that for vimentin increased. This structural modification was accompanied by initiation of DNA synthesis, with a peak on day 3 (45–55% labeled nuclei). Subconfluent, growth-arrested primary cultures responded weakly to purified platelet-derived growth factor and serum, and in secondary cultures no response to the mitogenic stimulation was obtained. The observations indicate that uterine SMC cultivated in vitro undergo a transformation from contractile to synthetic phenotype, similar to the transformation described previously for arterial SMC under the same conditions. The proliferative potential of the uterine cells is, however, markedly lower. The findings support the notions that the transition into synthetic phenotype is a necessary but not sufficient requirement for initiation of DNA synthesis in SMC and that visceral and vascular SMC represent separate differentiation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号