首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacterial cell division requires accurate selection of the middle of the cell, where the bacterial tubulin homologue FtsZ polymerizes into a ring structure. In Escherichia coli, site selection is dependent on MinC, MinD and MINE: MinC acts, with MinD, to inhibit division at sites other than the midcell by directly interacting with FTSZ: Here we report the crystal structure to 2.2 A of MinC from Thermotoga maritima. MinC consists of two domains separated by a short linker. The C-terminal domain is a right-handed beta-helix and is involved in dimer formation. The crystals contain two different MinC dimers, demonstrating flexibility in the linker region. The two-domain architecture and dimerization of MinC can be rationalized with a model of cell division inhibition. MinC does not act like SulA, which affects the GTPase activity of FtsZ, and the model can explain how MinC would select for the FtsZ polymer rather than the monomer.  相似文献   

2.
BACKGROUND: Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS: Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS: Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.  相似文献   

3.
Margolin W 《Current biology : CB》2001,11(10):R395-R398
Placement of the division site in Escherichia coli is determined in part by three Min proteins. Recent studies have shown that MinE, previously thought to form a static ring near the division site at the midcell position, actually joins MinC and MinD in their rapid oscillation between the cell poles.  相似文献   

4.
Proper placement of the bacterial cell division site requires the site-specific inactivation of other potential division sites. In Escherichia coli, selection of the correct mid-cell site is mediated by the MinC, MinD and MinE proteins. To clarify the functional role of the bacterial cell division inhibitor MinD, which is a membrane-associated ATPase that works as an activator of MinC, we determined the crystal structure of a Pyrococcus furiosus MinD homologue complexed with a substrate analogue, AMPPCP, and with the product ADP at resolutions of 2.7 and 2.0 A, respectively. The structure reveals general similarities to the nitrogenase iron protein, the H-Ras p21 and the RecA-like ATPase domain. Alanine scanning mutational analyses of E.coli MinD were also performed in vivo. The results suggest that the residues around the ATP-binding site are required for the direct interaction with MinC, and that ATP binding and hydrolysis play a role as a molecular switch to control the mechanisms of MinCDE-dependent bacterial cell division.  相似文献   

5.
van den Ent F  Löwe J 《The EMBO journal》2000,19(20):5300-5307
Bacterial cell division requires formation of a septal ring. A key step in septum formation is polymerization of FtsZ. FtsA directly interacts with FtsZ and probably targets other proteins to the septum. We have solved the crystal structure of FtsA from Thermotoga maritima in the apo and ATP-bound form. FtsA consists of two domains with the nucleotide-binding site in the interdomain cleft. Both domains have a common core that is also found in the actin family of proteins. Structurally, FtsA is most homologous to actin and heat-shock cognate protein (Hsc70). An important difference between FtsA and the actin family of proteins is the insertion of a subdomain in FtsA. Movement of this subdomain partially encloses a groove, which could bind the C-terminus of FtsZ. FtsZ is the bacterial homologue of tubulin, and the FtsZ ring is functionally similar to the contractile ring in dividing eukaryotic cells. Elucidation of the crystal structure of FtsA shows that another bacterial protein involved in cytokinesis is structurally related to a eukaryotic cytoskeletal protein involved in cytokinesis.  相似文献   

6.
In this review we have tried to describe proteins and supermolecular structures which take part in the division of bacterial cell. The principal cell division protein of the most of prokaryotes is FtsZ, a homologue of eukaryotic tubulin. FtsZ just as tubulin is capable to bind and hydrolyze GTP. The division of bacterial cell begins with forming of so called divisome. The basis of such divisome is a contractile ring (Z ring); the ring encircles the cell about midcell. Z ring consists of a bundle of laterally bound protofilaments, which have been formed as a result of FtsZ polymerization. Z ring is rigidly bounded to cytozolic side of inner membrane with participation of FtsA, ZipA, FtsW and many other cell division proteins of divisome. The ring directs the process of cytokinesis transmitting power of constriction to membrane. Primary structures of members of the family of prokaryotic FtsZs differ from eukaryotic tubulines significantly except the region, where the site of GTP binding is placed. There is high degree of homology between structures of these proteins in the region. FtsZ is one of the most conservative proteins in prokaryotes, but ftsZ genes have not been found in completely sequenced genomes of several species of microorganisms. There are 2 species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea among them. So these organisms divide without FtsZ. There are many open reading frames which encode proteins with unknown functions in genomes of U. parvum and M. mobile. The comparison of primary structures of these hypothetical proteins with structures of cell division proteins did not allow researchers to find similar proteins among them. We suppose that the process of cell division of these organisms should recruit proteins with function similar to FtsZ and having homologous with FtsZ or other cell division proteins spatial structures.  相似文献   

7.
The x-ray crystal structure of the P1 or H domain of the Salmonella CheA protein has been solved at 2.1-A resolution. The structure is composed of an up-down up-down four-helix bundle that is typical of histidine phosphotransfer or HPt domains such as Escherichia coli ArcB(C) and Saccharomyces cerevisiae Ypd1. Loop regions and additional structural features distinguish all three proteins. The CheA domain has an additional C-terminal helix that lies over the surface formed by the C and D helices. The phosphoaccepting His-48 is located at a solvent-exposed position in the middle of the B helix where it is surrounded by several residues that are characteristic of other HPt domains. Mutagenesis studies indicate that conserved glutamate and lysine residues that are part of a hydrogen-bond network with His-48 are essential for the ATP-dependent phosphorylation reaction but not for the phosphotransfer reaction with CheY. These results suggest that the CheA-P1 domain may serve as a good model for understanding the general function of HPt domains in complex two-component phosphorelay systems.  相似文献   

8.
In this review we describe proteins and supermolecular structures which take part in the division of bacterial cells. FtsZ, a eukaryotic tubulin homolog is a key cell division protein in most prokaryotes. FtsZ, as well as tubulin, is capable of binding and hydrolyzing GTP. The division of a bacterial cell begins with the forming of a so-called divisome. The basis of such a divisome is a contractile ring (Z ring) which encircles the cell about midcell. The Z-ring consists of a bundle of laterally bound protofilaments formed in result of FtsZ polymerization. Z-ring is rigidly bounded to the cytosolic side of the inner membrane with the participation of FtsA, ZipA, FtsW and many other divisome cell division proteins. The ring directs the process of cytokinesis transmitting constriction power to the membrane. The primary structures of the prokaryotic FtsZ family members significantly differ from eukaryotic tubulins except for the sites of GTP binding. There is a high degree of structural homology between these proteins in the region. FtsZ is one of the most conserved proteins in prokaryotes. However, ftsZ genes have not been found in several species of microorganisms with completely sequenced genomes. They include two species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea. Consequently, these organisms divide without FtsZ participation. The genomes of U. parvum and M. mobile have many open reading frames which encode proteins with unknown functions. A comparison of the primary structures of these hypothetical proteins did not identify any known cell division proteins. We hypothesize that the process of cell division in these organisms should involve proteins similar to FtsZ in function and homologous to FtsZ or other cell division proteins in structure.  相似文献   

9.
10.
In Gram‐negative bacteria, proper placement of the FtsZ ring, mediated by nucleoid occlusion and the activities of the dynamic oscillating Min proteins MinC, MinD and MinE, is required for correct positioning of the cell division septum. MinE is a topological specificity factor that counters the activity of MinCD division inhibitor at the mid‐cell division site. Its structure consists of an anti‐MinCD domain and a topology specificity domain (TSD). Previous NMR analysis of truncated Escherichia coli MinE showed that the TSD domain contains a long α‐helix and two anti‐parallel β‐strands, which mediate formation of a homodimeric α/β structure. Here we report the crystal structure of full‐length Helicobacter pylori MinE and redefine its TSD based on that structure. The N‐terminal region of the TSD (residues 19–26), previously defined as part of the anti‐MinCD domain, forms a β‐strand (βA) and participates in TSD folding. In addition, H. pylori MinE forms a dimer through the interaction of anti‐parallel βA‐strands. Moreover, we observed serial dimer–dimer interactions within the crystal packing, resulting in the formation of a multimeric structure. We therefore redefine the functional domain of MinE and propose that a multimeric filamentous structure is formed through anti‐parallel β‐strand interactions.  相似文献   

11.
The bacterial cell cycle requires the tight regulation and precise coordination of several sophisticated cellular processes. Prominent among them is the formation of the dividing wall or septum, which has to take place at the right time and place to ensure equality of the progeny and integrity of the genome. Nucleoid occlusion is a defence mechanism that prevents the chromosome from being bisected and broken by the division septum. It does so by preventing Z ring formation near the nucleoid, which also helps to determine the location of septation.  相似文献   

12.
The bacterial dcw cluster is a group of genes involved in cell division and peptidoglycan synthesis. Comparison of the cluster across several bacterial genomes shows that its gene content and its gene order are conserved in distant bacterial lineages and, moreover, that, being most conserved in rod-shaped bacteria, the degree of conservation relates to bacterial morphology. We propose a model in which the selective pressure to maintain the cluster arises from the need to efficiently coordinate the processes of elongation and septation in rod-shaped bacteria. Gene order in the dcw cluster would be conserved as a result of mechanisms comprising: (i) a limited amount of peptidoglycan precursors required both for septation and elongation of the wall; (ii) co-translational assembly of the protein complexes involved in cell division and in the synthesis of the peptidoglycan precursors; and (iii) alternation in the cellular localization of the assembled complexes to participate either in the synthesis of the septal peptidoglycan and division, or in the synthesis of the lateral wall. The name genomic channeling is proposed for this model as it involves a genomic arrangement that could facilitate the assembly of specific protein complexes and their subsequent conveyance to specific locations in the crowded cytoplasm and the envelope.  相似文献   

13.
The two-component signal transduction pathway widespread in prokaryotes, fungi, molds, and some plants involves an elaborate phosphorelay cascade. Rcp1 is the phosphate receiver module in a two-component system controlling the light response of cyanobacteria Synechocystis sp. via cyanobacterial phytochrome Cph1, which recognizes Rcp1 and transfers its phosphoryl group to an aspartate residue in response to light. Here we describe the crystal structure of Rcp1 refined to a crystallographic R-factor of 18.8% at a resolution of 1.9 A. The structure reveals a tightly associated homodimer with monomers comprised of doubly wound five-stranded parallel beta-sheets forming a single-domain protein homologous with the N-terminal activator domain of other response regulators (e.g., chemotaxis protein CheY). The three-dimensional structure of Rcp1 appears consistent with the conserved activation mechanism of phosphate receiver proteins, although in this case, the C-terminal half of its regulatory domain, which undergoes structural changes upon phosphorylation, contributes to the dimerization interface. The involvement of the residues undergoing phosphorylation-induced conformational changes at the dimeric interface suggests that dimerization of Rcp1 may be regulated by phosphorylation, which could affect the interaction of Rcp1 with downstream target molecules.  相似文献   

14.
15.
16.
Ye J  van den Berg B 《The EMBO journal》2004,23(16):3187-3195
Tsx is a nucleoside-specific outer membrane (OM) transporter of Gram-negative bacteria. We present crystal structures of Escherichia coli Tsx in the absence and presence of nucleosides. These structures provide a mechanism for nucleoside transport across the bacterial OM. Tsx forms a monomeric, 12-stranded beta-barrel with a long and narrow channel spanning the outer membrane. The channel, which is shaped like a keyhole, contains several distinct nucleoside-binding sites, two of which are well defined. The base moiety of the nucleoside is located in the narrow part of the keyhole, while the sugar occupies the wider opening. Pairs of aromatic residues and flanking ionizable residues are involved in nucleoside binding. Nucleoside transport presumably occurs by diffusion from one binding site to the next.  相似文献   

17.
18.
The conjugative transfer of F-like plasmids is repressed by FinO, an RNA binding protein. FinO interacts with the F-plasmid encoded traJ mRNA and its antisense RNA, FinP, stabilizing FinP against endonucleolytic degradation and facilitating sense-antisense RNA recognition. Here we present the 2.0 A resolution X-ray crystal structure of FinO, lacking its flexible N-terminal extension. FinO adopts a novel, elongated, largely helical conformation. An N-terminal region, previously shown to contact RNA, forms a positively charged alpha-helix (helix 1) that protrudes 45 A from the central core of FinO. A C-terminal region of FinO that is implicated in RNA interactions also extends out from the central body of the protein, adopting a helical conformation and packing against the base of the N-terminal helix. A highly positively charged patch on the surface of the FinO core may present another RNA binding surface. The results of an in vitro RNA duplexing assay demonstrate that the flexible N-terminal region of FinO plays a key role in FinP-traJ RNA recognition, and supports our proposal that this region and the N-terminus of helix 1 interact with and stabilize paired, complementary RNA loops in a kissing complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号