首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Stimulation of dopamine D2 receptors potentiates Ca2+ ionophore- or ATP-induced arachidonic acid (AA) release in D2 receptor cDNA-transfected Chinese hamster ovary (CHO) cells [CHO(D2)]. By using a combination of chromatographic, biochemical, and radioimmunochemical techniques, we show here that prostaglandin (PG) E2 is a major product of AA metabolism in CHO(D2) cells stimulated with the Ca2+ ionophore A23187. Formation of this PG was markedly increased by the concomitant application of quinpirole, a D2 receptor agonist. In addition, PGE2 enhanced D2-dependent amplification of AA release, either when it was added (EC50 = 100 nM) or when it was produced endogenously, as shown by experiments carried out with the cyclooxygenase inhibitor indomethacin. The results suggest that PGE2 may participate in D2 receptor-mediated potentiation of AA release in CHO(D2) cells. They also support a functional role for this PG in the modulation of dopaminergic transmission in areas of the CNS, such as amygdala and hypothalamus, where high levels of both PGE2 and dopamine D2 receptors are found.  相似文献   

2.
Chronic in vivo exposure of rats to ethanol in a complete liquid diet for 14 or 21 days produced a behavioral tolerance to the acute injection of ethanol. After 21 days, but not 14 days, of chronic exposure, there was a significant increase in the maximum density of striatal D1 and D2 dopamine receptors without a change in these receptors' affinities. A 24-h withdrawal from the 21-day exposure did not alter the observed increase in density. Both the level and duration of ethanol exposure appear to be important variables for demonstration of an increase in striatal D1 and D2 dopamine receptors.  相似文献   

3.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

4.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

5.
Abstract: The effects of D1 and D2 dopamine ligands on protein kinase C (PKC) activity were examined in synaptoneurosomes. Incubation with D1 agonists (SKF 38393, fenodopam), in the presence of calcium, decreased the soluble and increased the particulate PKC activity. These effects were reversed by SCH 23390, which by itself had the opposite effect of increasing the soluble and decreasing the particulate PKC activity. In contrast, incubation with the D2 agonists [LY 171555, (+)-3-(3-hydroxyphenyl)- N - n -propylpiperidine, RU 24213] increased the soluble and decreased the particulate PKC activity. These effects were reversed by sulpiride. (−)-3-(3-Hydroxyphenyl)- N - n -propylpiperidine had a D2 antagonist profile. Apomorphine showed a biphasic dose-response change; i.e., it decreased particulate PKC activity at the D2 receptor at low concentrations (0.1 µ M ) and increased it at the D1 receptor at higher concentrations (10 µ M ). Pretreatment with tetrodotoxin or omission of calcium in the incubation medium did not alter the responses of the D2 agonists, but it reversed the changes in PKC activity induced by the D1 agonists and converted the biphasic response of apomorphine to a monophasic inhibition. These results indicate that (1) D1 and D2 dopamine receptors are negatively coupled to PKC and (2) the increase in particulate PKC activity seen with the D1 drugs in the presence of calcium is mediated indirectly via a transneuronal effect.  相似文献   

6.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

7.
Abstract: The adenosine A2a receptor inhibition of potassium (15 m M )-evoked GABA release from striatal nerve terminals has been examined. High extracellular calcium concentrations (4 m M ) reduced the effect of the A2a receptor agonist CGS-21680 (1 n M ). CGS-21680 inhibited GABA release in the presence of the L-type calcium channel blocker nifedipine, which itself inhibited evoked GABA release (by 16 ± 4%). ω-Conotoxin inhibited the evoked release by 45 ± 4% and prevented the action of CGS-21680. Forskolin and 8-bromo cyclic AMP both stimulated evoked GABA release at low concentrations, but at higher concentrations they abolished the inhibition by CGS-21680 without affecting the evoked release. The nonselective protein kinase inhibitor H-7 inhibited both the evoked release and the inhibition by CGS-21680, whereas the selective protein kinase A and G inhibitor HA-1004 had no effect on either evoked release or the action of CGS-21680. Pretreatment with pertussis toxin did not affect the A2a receptor-mediated inhibition. Therefore, the effect of A2a receptor stimulation was not mediated by protein kinases A or G but was inhibited by elevated cyclic AMP levels and mimicked by inhibitors of the N-type calcium channel and protein kinase C.  相似文献   

8.
We have synthesized and characterized a series of novel fluorescently labeled ligands with high affinity and specificity for D1 and D2 dopamine receptors. D1-selective probes were synthesized using (R,S)-5-(4'-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl- [1H]-3-benzazepin-7-ol, the 4'-amino derivative of the high-affinity, D1-selective antagonist SCH-23390, whereas D2-selective probes were synthesized using the high-affinity, D2-selective antagonist N-(p-aminophenethyl)spiperone (NAPS). These ligands were coupled via spacer arms of various lengths to the fluorophores fluorescein and bodipy, which fluoresce in the yellow-green region, and to tetramethylrhodamine, which is a red fluorophore. The interaction of these fluorescent ligands with dopamine receptors was evaluated by examining their ability to compete for the binding of the radiolabeled antagonists [3H]SCH-23390 or [3H]methylspiperone to rat striatal D1 or D2 dopamine receptors, respectively. We report here that these novel fluorescent ligands exhibit very high affinity and specificity for either D1 or D2 dopamine receptors. The availability of various fluorescent ligands with different emission maxima and with high affinity and specificity for D1 and D2 dopamine receptors will now permit investigations involving the visualization and localization of these receptor subtypes at the single cell and intracellular levels in the CNS and on intact cells in culture.  相似文献   

9.
Dopamine has been demonstrated to be involved in the development of ischemic neuronal damage in the striatum. This detrimental effect of dopamine may involve activation of second messenger systems, such as the cyclic AMP (cAMP) cascade, which may enhance the susceptibility of striatal neurons to ischemia. In the present study, we have evaluated the relationship between ischemia-induced changes in cAMP and dopamine neurotransmission. Microdialysis probes were implanted in both striata, and a D1 antagonist (SCH-23390, 100 microM) was administered through one probe and modified Ringer's solution through the other. After a stabilization period, rats (n = 6) were subjected to 20 min of ischemia by two-vessel occlusion plus hypotension. Extracellular samples were collected from both striata, before, during, and after ischemia, and analyzed for cAMP by radioimmunoassay. Ischemia induced a significant increase in extracellular cAMP (means +/- SE, fmol/microliter; baseline: 4.35 +/- 1.1, ischemia: 12.2 +/- 1.98), which was also observed at 4 h of recirculation (mean level of 8.45 +/- 1.14). Treatment with the D1 antagonist significantly inhibited the rise in extracellular cAMP during ischemia and recirculation. These results indicate that an ischemia-induced surge in dopamine and activation of D1 receptors are involved in the generation of cAMP during ischemia and recirculation. Because activation of the adenylate cyclase cascade may modulate the effects of glutamate, generation of cAMP through this pathway may play a role in facilitating the injurious effects of dopamine during ischemia.  相似文献   

10.
Abstract: Coated vesicles (CVs) isolated from bovine striatal tissue were examined to determine whether they are associated with dopamine signal systems consisting of dopamine D1 and D2 receptors, G proteins, and adenylate cyclase. Dopamine receptors in CVs were characterized by a dopamine D1 receptor antagonist, [3H]SCH 23390, and a dopamine D2 receptor antagonist, [3H]-spiroperidol. The bindings of both ligands were specifically saturable and reversible with a dissociation constant ( K D) of 0.65 and 0.5 n M , respectively. Dopaminergic antagonists and agonists inhibited the specific bindings of [3H]SCH 23390 and [3H]spiroperidol in a stereoselective and concentration-dependent manner with an appropriate rank order potency for dopamine D1 or D2 receptors. The regulations of the agonist binding by guanyl-5-ylimidodiphosphate were observed. ADP ribosylation of the CVs with [32P]NAD demonstrated predominant labeling of bands of Mr 47,000–52,000, 42,000–45,000, and 40,000-39,000, which corresponded to the known molecular weights of the α subunits of Gs and Gi proteins. The presence of α and β subunits of G proteins in the CVs was also confirmed by immunoblotting assay. Adenylate cyclase activity, which was stimulated by SKF 38393 and inhibited by dopamine D2 receptor agonists, was present in the CVs. These findings suggest that the dopamine D1 and D2 receptors in the CVs couple with adenylate cyclase via Gs/Gi protein.  相似文献   

11.
Neurokinin1 (NK1) receptors are up-regulated in the spinal cord during peripheral inflammation, but the biochemical mediators regulating this change have not been resolved. The promoter region of the gene encoding the NK1 receptor contains a cyclic AMP (cAMP)-responsive element. Therefore, we used primary cultures of neonatal rat spinal cord to test whether increasing intracellular cAMP can increase expression of NK1 receptors. Treatment with dibutyryl-cAMP (dbcAMP) resulted in a time-dependent increase in 125I-Bolton-Hunter-substance P (BHSP) binding in the cultures; treatment with dibutyryl-cyclic GMP did not. Treatment with forskolin plus 3-isobutyl-1-methylxanthine mimicked the increase in binding, providing further evidence for the involvement of cAMP in this effect. Scatchard analyses indicated that the increase in BHSP binding was due to an increase in binding capacity. The cAMP-induced increase in BHSP binding was preceded by an increase in levels of mRNA for NK1 receptor and was attenuated by pretreatment with cycloheximide. These data indicate that the cAMP-induced increase in binding was due to increased synthesis of NK1 receptors. Comparison of substance P (SP)-induced production of inositol phosphates between cultures pretreated with dbcAMP and controls suggested that increased expression of NK1 receptors did not result in increased generation of second messenger by NK1 receptor activation. Together, these data indicate that a persistent increase in intracellular cAMP increases expression of NK1 receptors. Because NK1 receptor activation contributes to increased excitability of spinal neurons, the increased expression of NK1 receptors may be important in maintaining responsiveness of spinal neurons to SP in central mechanisms underlying hyperalgesia.  相似文献   

12.
Forskolin and vasoactive intestinal polypeptide (VIP) were shown to increase cyclic AMP accumulation in a human neuroblastoma cell line, SK-N-SH cells. The alpha 2-adrenergic agonist UK 14304 decreased forskolin-stimulated cyclic AMP levels by 40 +/- 2%, with an EC50 of 83 +/- 20 nM. This response was blocked by pretreatment with pertussis toxin (PT) (EC50 = 1 ng/ml) or by the alpha 2-antagonists yohimbine, idazoxan, and phentolamine. Antagonist IC50 values were 0.3 +/- 0.1, 2.2 +/- 0.3, and 1.4 +/- 0.1 microM, respectively. This finding suggests the presence of normal inhibitory coupling of SK-N-SH cell alpha 2-adrenergic receptors to adenylate cyclase via the inhibitory GTP-binding protein species, Gi. Muscarinic receptors in many target cell types are coupled to inhibition of adenylate cyclase. However, in SK-N-SH cells, muscarinic agonists synergistically increased (67-95%) the level of cyclic AMP accumulation elicited by forskolin or VIP. EC50 values for carbamylcholine (CCh) and oxotremorine facilitation of the forskolin response were 1.2 +/- 0.2 and 0.3 +/- 0.1 microM, respectively. Pharmacological studies using the muscarinic receptor subtype-preferring antagonists 4-diphenylacetoxy-N-methylpiperidine, pirenzepine, and AF-DX 116 indicated mediation of this response by the M3 subtype. IC50 values were 14 +/- 1, 16,857 +/- 757, and 148,043 +/- 16,209 nM, respectively. CCh-elicited responses were unaffected by PT pretreatment. Muscarinic agonist binding affinity was indirectly measured by the ability of CCh to compete for [3H]quinuclidinyl benzilate binding sites on SK-N-SH cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Dopamine and 2-chloroadenosine independently promoted the accumulation of cyclic AMP in retinas from 16-day-old chick embryos. The two compounds added together either in saturating or subsaturating concentrations were not additive for the accumulation of the cyclic nucleotide in the tissue. This fact was shown to be due to the existence of an adenosine receptor that mediates the inhibition of the dopamine-dependent cyclic AMP accumulation in the retina. Adenosine inhibited, in a dose-dependent fashion, the accumulation of cyclic AMP induced by dopamine in 12-day-old chick embryo retinas, with an IC50 of approximately 1 microM. This effect was not blocked by dipyridamole. N6-(l-Phenylisopropyl)adenosine, (l-PIA) was the most potent adenosine analog tested, showing an IC50 of 0.1 microM which was two orders of magnitude lower than its stereoisomer d-PIA (10 microM). The maximal inhibition of the dopamine-elicited cyclic AMP accumulation by adenosine and related analogs was 70%. The inhibitory effect promoted by adenosine was blocked by 3-isobutyl-1-methylxanthine (IBMX) or by adenosine deaminase. Adenine was not effective; whereas ATP and AMP promoted the inhibition of the dopamine effect only at very high concentrations. Apomorphine was only 30% as effective as dopamine in promoting the cyclic AMP accumulation in retinas from 11- to 12-day-old embryos and 2-chloroadenosine did not interfere with the apomorphine-mediated shift in cyclic AMP levels. In the retinas from 5-day-old posthatched chickens dopamine and apomorphine were equally effective in eliciting the accumulation of cyclic AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2×2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2×2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2×2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2×2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2×2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2×2 receptor and ATP-mediated physiological effects in the nervous system.  相似文献   

15.
D2-dopamine (3,4-dihydroxyphenylethylamine) receptors were successfully solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate from an estrone-induced rat pituitary adenoma. Forty-five percent of initial protein and 48% of initial [3H]spiroperidol binding sites were solubilized. The high affinity as well as the stereoselectivity of the sites was preserved. The order of potency of dopaminergic agonists was found to be typical of D2 receptors. Target size analysis by radiation inactivation indicated a molecular weight of 143,000 +/- 3,000 and of 106,000 +/- 4,000 daltons for membrane-bound and solubilized receptors, respectively. This suggests the loss of a 37,000-dalton subunit during solubilization without significant modification of binding characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptor protein preparation photolabeled with N-(p-azido-m[125I]iodophenethyl)spiroperidol confirmed the existence of a 94,000-dalton peptide which probably constitutes the ligand binding site of the receptor. Thus, our data indicate that chronic estrogen treatment of rats, although inducing a pituitary adenoma, does not modify the pharmacological characteristics of D2 receptors. These data suggest therefore that these adenoma may represent an ideal source of material for further biochemical characterization of D2 receptors.  相似文献   

16.
Previous studies have shown that the injection of 5-hydroxytryptamine (5-HT) into the third ventricle of rats on the afternoon of proestrus increases glutamic acid decarboxylase (GAD) activity in the preoptic area and the hypothalamus. In the present report we examine the adenylate cyclase-cyclic AMP (cAMP) system as mediator of that effect. The increase in GAD activity induced by intraventricular injection of 5-HT was completely blocked by injecting an antiserum against cAMP into the third ventricle 30 min earlier, whereas an injection of serum from normal rabbits was ineffective. On the contrary, activation of adenylate cyclase activity by intraventricular injection of forskolin increased GAD activity, an effect that was also blocked by anti-cAMP serum. Anti-cAMP serum also lowered GAD activity in the preoptic area and hypothalamus when injected on the morning of proestrus but not when injected in the afternoon, when the values of GAD activity were already low. The results suggest that a cAMP mechanism may be involved in the changes in preoptic-area and hypothalamic GAD activity such as the rise in enzyme activity induced by intraventricular injection of 5-HT.  相似文献   

17.
Abstract: This study investigated possible D1/D2 interactions in rat and bovine striatal tissue by examining the effects of D2 antagonists on the action of dopamine at D1 dopamine receptors. In addition, the extent to which D2 antagonists may induce an agonist low-affinity state of the D1 receptor was evaluated in comparison with the effects of the guanine nucleotide analogue 5′-guanylylimidodiphosphate [Gpp(NH)p]. In saturation experiments dopamine caused a dose-dependent decrease in rat striatal and bovine caudate D1 receptor density. This effect of dopamine, which has been shown to be sensitive to Gpp(NH)p, was not altered by pretreatment with either of the selective D2 antagonists eticlopride (200 nM) or domperidone (200 nM). Results from displacement experiments show that the affinity of dopamine for D1 receptors and the proportion of receptors in an agonist high-affinity state, are reduced by Gpp(NH)p (100 µM) but not by eticlopride. A molar excess of dopamine (100 µM) promotes the dissociation of (±)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol ([3H]SCH 23390) from rat striatal D1 receptors at a rate that is significantly slower than when dissociation is initiated using 1 µM piflutixol. After pretreatment with Gpp(NH)p, [3H]SCH 23390 dissociation induced by dopamine occurred at an even slower rate. Pretreatment with eticlopride had no effect on the dopamine-induced rate of [3H]SCH 23390 dissociation. These results indicate that all experimental approaches detected dopamine effects at D1 receptors that are Gpp(NH)p sensitive and D2 antagonist insensitive and provide no evidence to support a D1/D2 link operating at the receptor level.  相似文献   

18.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

19.
Abstract: To expand on the nature of regional cerebral vulnerability to ischemia, the release of dopamine (DA) and dopaminergic (D1 and D2) receptors were investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (1–2 h). Extracellular cortical and striatal content of DA and its metabolites was measured by microdialysis using HPLC with electrochemical detection. The kinetic properties of D1 and/or D2 receptor binding sites were determined in cortical and striatal membranes with the use of radiolabeled ligands (125I-SCH23982 and [3H]YM-09151-2, respectively). The ischemic release of DA from the striatum was greater (400-fold over preischemic level) than that from the cortex (12-fold over preischemic content). The affinity for the D1-receptor ligand was lower ( K D= 1.248 ± 0.047 n M ) after ischemia than that for sham controls ( K D= 0.928 ± 0.032 n M, p < 0.001). The number of binding sites for D2 receptors decreased in striatum ( B max= 428 ± 18.4 fmol/mg of protein) after ischemia compared with sham controls ( B max= 510 ± 25.2 fmol/mg of protein, p < 0.05). D1 or D2 binding sites were not changed either in the ischemic cortex or postischemic striatum and cortex. The findings strongly suggest that the ischemic release of DA from striatum is associated with early transient changes in D1- and D2-mediated DA neurotransmission.  相似文献   

20.
Newly formed prostaglandins (PGs), which are assumed to act as modulators of afferent sensory messages, were studied in chick dorsal root ganglia (DRG) during development. [1-14C]Arachidonic acid was converted by DRG homogenates from 1-week-old chickens into two major 14C-PGs: PGE2 and PGD2. The enzymatic conversion of arachidonic acid was characterized as follows: (a) Boiled preparations were inactivated; (b) synthesis of PGs was inhibited by pretreatment with aspirin or indomethacin and enhanced by esculetin, a protector of cyclooxygenase; and (c) [14C]PGE2 and [14C]PGD2 accumulation was a protein dose-dependent process. Further fractionation of crude homogenates indicated that PG endoperoxide synthetase (EC 1.14.99.1) and PGE2 synthetase (EC 5.3.99.3) were membrane-bound enzymes, whereas PGD2 synthetase (EC 5.3.99.2) was recovered in the cytosol. During development, from embryonic day 10 to day 14 after hatching, PGD2 synthetase activity remained constant; in contrast, a sharp rise in [14C]PGE2 synthesis was observed from embryonic day 14 to 18. The time curves of PGD2 and PGE2 synthetase specific activity may be related to changes taking place in the cell population of developing DRG. It is therefore suggested that arachidonic acid would be enzymatically converted early into PGD2 by maturing ganglion cells and then later into PGE2 by proliferating fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号