首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Ishii  S S Lehrer 《Biochemistry》1990,29(5):1160-1166
Rabbit skeletal tropomyosin (Tm) specifically labeled at cysteine groups with N-(1-pyrenyl)-iodoacetamide (PIA) exhibits excimer fluorescence. The excimer fluorescence was sensitive to the local conformation of Tm, to actin binding, and, in reconstituted thin filaments, to the Tm state change induced by binding of myosin subfragment 1 (S1). The properties of PIATm were similar to previously studied pyrenylmaleimide-labeled Tm (PMTm) [Ishii, Y., & Lehrer, S.S. (1985) Biochemistry 24, 6631] except that S1 binding to actin-Tm increased the excimer fluorescence in contrast to the time-dependent decrease seen for PMTm. The fluorescence properties of PIATm are sensitive to the Tm chain-chain interaction via equilibria among pyrene configurations and nonfluorescent dimer as well as the monomer and excimer-forming configurations. The effect of bound troponin (Tn) on the excimer fluorescence of PIATm in the reconstituted systems was dependent on ionic strength with a slight Ca2+ dependence. S1 titrations in the absence and presence of Tn and Ca2+ indicated that the excimer fluorescence probes the state change of Tm from the weak S1 binding state to the strong S1 binding state which is facilitated by Ca2+ [Hill et al. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 3186]. Binding of MgADP-S1 and MgAMPPNP-S1 produced the same total excimer fluorescence change as for nucleotide-free S1, showing that the strong S1 binding state of Tm-actin is independent of nucleotide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
I K Chandy  J C Lo  R D Ludescher 《Biochemistry》1999,38(29):9286-9294
Polarized phosphorescence from the triplet probe erythrosin-5-iodoacetamide attached to sulfhydryls in rabbit skeletal and cardiac muscle tropomyosin (Tm) was used to measure the microsecond rotational dynamics of these tropomyosins in a complex with F-actin. The steady-state phosphorescence anisotropy of skeletal tropomyosin on F-actin was 0.025 +/- 0.005 at 20 degrees C; the comparable anisotropy for cardiac tropomyosin was 0.010 +/- 0. 003. Measurements of the anisotropy as a function of temperature and solution viscosity (modulated by addition of glycerol) indicated that both skeletal and cardiac tropomyosin undergo complex rotational motions on the surface of F-actin. Models assuming either long axis rotation of a rigid rod or torsional twisting of a flexible rod adequately fit these data; both analyses indicated that cardiac Tm is more mobile than skeletal Tm and that the increased mobility on the surface of F-actin reflected either the rotational motion of a smaller physical unit or the torsional twisting of a less rigid molecule. The binding of myosin heads (S1) to the Tm-F-actin complexes increased the anisotropy to 0.049 +/- 0.004 for skeletal and 0.054 +/- 0.007 for cardiac tropomyosin. The titration of the skeletal tropomyosin-F-actin complex by S1 showed a break at an S1/actin ratio of 0.14; this complex had an anisotropy of 0.040 +/- 0.007, suggesting that one bound head effectively restricted the motion of each skeletal tropomyosin. A similar titration with cardiac tropomyosin reached a plateau at an S1/actin ratio of 0.4, suggesting that 2-3 myosin heads are required to immobilize cardiac Tm. Surface mobility is predicted by structural models of the interaction of tropomyosin with the actin filament while the decrease in tropomyosin mobility upon S1 binding is consistent with current theories for the proposed role of myosin binding in the mechanism of tropomyosin-based regulation of muscle contraction.  相似文献   

3.
Coulton A  Lehrer SS  Geeves MA 《Biochemistry》2006,45(42):12853-12858
Skeletal and smooth muscle tropomyosin (Tm) require acetylation of their N-termini to bind strongly to actin. Tm containing an N-terminal alanine-serine (AS) extension to mimic acetylation has been widely used to increase binding. The current study investigates the ability of an N-terminal AS extension to mimic native acetylation for both alpha alpha and beta beta smooth Tm homodimers. We show that (1) AS alpha-Tm binds actin 100-fold tighter than alpha-Tm and 2-fold tighter than native smooth alphabeta-Tm, (2) beta-Tm requires an AS extension to bind actin, and (3) AS beta-Tm binds actin 10-fold weaker than AS alpha-Tm. Tm is present in smooth muscle tissues as >95% heterodimer; therefore, we studied the binding of recombinant alphabeta heterodimers with different AS extensions. This study shows that recombinant Tm requires an AS extension on both alpha and beta chains to bind like native Tm and that the alpha chain contributes more to actin binding than the beta chain. Once assembled onto an actin filament, all smooth muscle Tm's regulate S1 binding to actin Tm in the same way, irrespective of the presence of an AS extension.  相似文献   

4.
To identify interaction sites we measured the rotational motion of a spin label covalently bound to the side chain of a cysteine genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, and 279. Upon the addition of F-actin, the mobility of all the spin labels, especially at position 13, 271, or 279, of Tm was inhibited significantly. Slow spin-label motion at the C-terminus (at the 230th and 271st residues) was observed upon addition of troponin. The binding of myosin-head S1 fragments without troponin immobilized Tm residues at 146, 160, 190, 209, 230, 271, and 279, suggesting that these residues are involved in a direct interaction between Tm and actin in its open state. As immobilization occurred at substoichiometric amounts of S1 binding to actin (a 1:7 molar ratio), the structural changes induced by S1 binding to one actin subunit must have propagated and influenced interaction sites over seven actin subunits.  相似文献   

5.
Y Ishii  S S Lehrer 《Biochemistry》1987,26(16):4922-4925
The monomer fluorescence of N-(1-pyrenyl)maleimide-labeled tropomyosin bound to F-actin (PTm-actin) increases when myosin subfragment 1 (S1) binds to actin and is half complete when only approximately 1 S1 is bound to 7 actin subunits [Ishii, Y., & Lehrer, S. S. (1985) Biochemistry 24, 6631-6638]. Similar studies of the binding of S1 and S1-ADP to fully reconstituted thin filaments [PTm-actin-troponin (Tn)] are now reported. The pyrene monomer fluorescence change was half complete when approximately 0.5 S1/7 actin subunits and approximately 1.5 S1/7 actin subunits were bound in the presence and absence of Ca2+, respectively. In the presence of Mg2+-ADP, when S1 binding is weakened, the S1 binding profiles and fluorescence changes were sigmoidal, with the cooperative transitions occurring at lower [S1] in the presence of Ca2+ as first shown by Greene and Eisenberg for S1 binding [Greene, L., & Eisenberg, E. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2616-2620]. It was possible to fit both the binding and fluorescence data with the same parameters of a two-state (weak and strong S1 binding) cooperative binding model [Hill, T., Eisenberg, E., & Greene, L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 3186-3190] for each Ca2+ situation if the fluorescence change is interpreted as the fraction of tropomyosin (Tm) units in the strong S1 binding state. These data indicate that the fluorescence change is a direct measure of the S1-induced change of state of Tm in the fully reconstituted thin filament.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Maytum R  Geeves MA  Konrad M 《Biochemistry》2000,39(39):11913-11920
The yeast tropomyosin 1 gene (TPM1) encodes the major isoform of the two tropomyosins (Tm) found in yeast. The gene has been expressed in E. coli and the protein purified. The gene product (yTm1) is a 199-amino acid protein that has a low affinity for actin compared to the native yTm1 purified from yeast. Mass spectrometry shows that the native protein is acetylated while the recombinant protein is not. A series of yTm1 N-terminal constructs were made with either an Ala-Ser dipeptide extension previously shown to restore actin binding to skeletal muscle Tm or the natural extension found in fibroblast Tm 5a/b. All constructs bound actin tightly and showed similar CD spectra and thermal stability. All constructs induced cooperativity in the equilibrium binding of myosin subfragment 1, to actin but the binding curves differed significantly between the constructs. The apparent cooperative unit size (n) and closed/open equilibrium (K(T)) were determined using a fluorescence titration technique [Maytum et al. (1998) Biophys. J. 74, A347]. The data could be accounted for by changes in K(T) (0.1-1) with no change in n. Values of n were approximately twice the structural unit size (5 actin sites). The presence of yTm on actin had little effect upon the overall affinity of S1 for actin despite showing an ability to regulate the acto-myosin interaction. These results show that the short yTm can aid our understanding of actomyosin regulation and that the N-terminus of Tm has a major influence upon its regulatory properties.  相似文献   

7.
To obtain information on Ca(2+)-induced tropomyosin (Tm) movement in Ca(2+)-regulated muscle thin filaments, frequency-domain fluorescence energy transfer data were collected between 5-(2-iodoacetyl-amino-ethyl-amino)naphthalene-1-sulfonic acid at Cys-190 of Tm and phalloidin-tetramethylrhodamine B isothiocyanate bound to F-actin. Two models were used to fit the experimental data: an atomic coordinate (AC) model coupled with a search algorithm that varies the position and orientation of Tm on F-actin, and a double Gaussian distance distribution (DD) model. The AC model showed that little or no change in transfer efficiency is to be expected between different sites on F-actin and Tm if Ca(2+) causes azimuthal movement of Tm of the magnitude suggested by structural data (C. Xu, R. Craig, L. Tobacman, R. Horowitz, and W. Lehman. 1999. Biophys. J. 77:985-992). However, Ca(2+) produced a small but significant change in our phase/modulation versus frequency data, showing that changes in lifetime decay can be detected even when a change of the steady-state transfer efficiency is very small. A change in Tm azimuthal position of 17 on the actin filament obtained with the AC model indicates that solution data are in reasonable agreement with EM image reconstruction data. In addition, the data indicate that Tm also appears to rotate about its axis, resulting in a rolling motion over the F-actin surface. The DD model showed that the distance from one of the two chains of Tm to F-actin was mainly affected, further verifying that Ca(2+) causes Tm to roll over the F-actin surface. The width of the distance distributions indicated that the position of Tm in absence and in presence of Ca(2+) is well defined with appreciable local flexibility.  相似文献   

8.
It has been shown that skeletal and smooth muscle myosin heads binding to actin results in the movement of smooth muscle tropomyosin, as revealed by a change in fluorescence resonance energy transfer between a fluorescence donor on tropomyosin and an acceptor on actin (Graceffa, P. (1999) Biochemistry 38, 11984-11992). In this work, tropomyosin movement was similarly monitored as a function of unphosphorylated and phosphorylated smooth muscle myosin double-headed fragment smHMM. In the absence of nucleotide and at low myosin head/actin ratios, only phosphorylated heads induced a change in energy transfer. In the presence of ADP, the effect of head phosphorylation was even more dramatic, in that at all levels of myosin head/actin, phosphorylation was necessary to affect energy transfer. It is proposed that the regulation of tropomyosin position on actin by phosphorylation of myosin heads plays a key role in the regulation of smooth muscle contraction. In contrast, actin-bound caldesmon was not moved by myosin heads at low head/actin ratios, as uncovered by fluorescence resonance energy transfer and disulfide cross-linking between caldesmon and actin. At higher head concentration caldesmon was dissociated from actin, consistent with the multiple binding model for the binding of caldesmon and myosin heads to actin (Chen, Y., and Chalovich, J. M. (1992) Biophys. J. 63, 1063-1070).  相似文献   

9.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

10.
Rabbit skeletal muscle alpha-tropomyosin (Tm) and the deletion mutant (D234Tm) in which internal actin-binding pseudo-repeats 2, 3, and 4 are missing [Landis et al. (1997) J. Biol. Chem. 272, 14051-14056] were used to investigate the interaction between actin and tropomyosin or actin and troponin (Tn) by means of fluorescence resonance energy transfer (FRET). FRET between Cys-190 of D234Tm and Gln-41 or Cys-374 of actin did not cause any significant Ca2+-induced movement of D234Tm, as reported previously for native Tm [Miki et al. (1998) J. Biochem. 123, 1104-1111]. FRET did not show any significant S1-induced movement of Tm and D234Tm on thin filaments either. The distances between Cys-133 of TnI, and Gln-41 and Cys-374 of actin on thin filaments reconstituted with D234Tm (mutant thin filaments) were almost the same as those on thin filaments with native Tm (wild-type thin filaments) in the absence of Ca2+. Upon binding of Ca2+ to TnC, these distances on mutant thin filaments increased by approximately 10 A in the same way as on wild-type thin filaments, which corresponds to a Ca2+-induced conformational change of thin filaments [Miki et al. (1998) J. Biochem. 123, 324-331]. The rigor binding of myosin subfragment 1 (S1) further increased these distances by approximately 7 A on both wild-type and mutant thin filaments when the thin filaments were fully decorated with S1. This indicates that a further conformational change on thin filaments was induced by S1 rigor-binding (S1-induced or open state). Plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed that the curve for wild-type thin filaments is hyperbolic, whereas that for mutant thin filaments is sigmoidal. This suggests that the transition to the S1-induced state on mutant thin filaments is depressed with a low population of rigor S1. In the absence of Ca2+, the distance also increased on both wild-type and mutant thin filaments close to the level in the presence of Ca2+ as the molar ratio of S1 to actin increased up to 1. The curves are sigmoidal for both wild-type and mutant thin filaments. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding. For mutant thin filaments, the transition from the closed state to the open state in the presence of ATP is strongly depressed, which results in the inhibition of acto-myosin ATPase even in the presence of Ca2+. The present FRET measurements provide structural evidence for three states of thin filaments (relaxed, Ca2+-induced or closed, and S1-induced or open states) for the regulation mechanism of skeletal muscle contraction.  相似文献   

11.
Maytum R  Konrad M  Lehrer SS  Geeves MA 《Biochemistry》2001,40(24):7334-7341
The regulatory properties of naturally occurring tropomyosins (Tms) of differing lengths have been examined. These Tms span from 4 to 7 actin subunits. Native proteins have been used to study the common 7 actin-spanning skeletal and smooth muscle variants and expressed recombinant proteins to study the shorter fibroblast 5a, 5b, yeast Tm1 and yeast Tm2 Tms (6, 6, 5, and 4 actin-spanning variants, respectively). The yTm2 has been overexpressed in Escherichia coli with N-terminal constructs equivalent to those previously used for yTm1 [Maytum, R., et al. (2000) Biochemistry 39, 11913]. The regulation of myosin subfragment 1 (S1) binding to actin by Tm has been assessed using a sensitive S1 binding titration. The equilibrium between closed and open (C to M states, KT = 0.1-0.14) was similar for all vertebrate Tms. Apart from skTm where the apparent cooperative unit size (n) is the same as the structural size (n = 7 actin sites), the other vertebrate Tms that were studied exhibited large n values (n = 12-14). The yeast Tms also exhibited large values of n (6-9) in comparison to their structural sizes (4-5). The determined value of KT depended on the N-terminal sequence (KT = 0.15-1). These results are compared with the effect of S1 upon Tm's affinity for actin. The yeast Tms have regulatory parameters similar to those of skTm, but unlike skTm, S1 has little effect upon their actin affinity. This shows that an actin state with a high affinity for S1 and Tm is not necessary for regulation, and the higher affinity of S1 for actin in the presence of vertebrate Tms is probably the result of a direct interaction of S1 with Tm.  相似文献   

12.
In order to help understand the spatial rearrangements of thin filament proteins during the regulation of muscle contraction, we used fluorescence resonance energy transfer (FRET) to measure Ca(2+)-dependent, myosin-induced changes in distances and fluorescence energy transfer efficiencies between actin and the inhibitory region of troponin I (TnI). We labeled the single Cys-117 of a mutant TnI with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS) and Cys-374 of actin with 4-dimethylaminophenylazophenyl-4'-maleimide (DABmal). These fluorescent probes were used as donor and acceptor, respectively, for the FRET measurements. We reconstituted a troponin-tropomyosin (Tn-Tm) complex which contained the AEDANS-labeled mutant TnI, together with natural troponin T (TnT), troponin C (TnC) and tropomyosin (Tm) from rabbit fast skeletal muscle. Fluorescence titration of the AEDANS-labeled Tn-Tm complex with DABmal-labeled actin, in the presence and absence of Ca(2+), resulted in proportional, linear increases in energy transfer efficiency up to a 7:1 molar excess of actin over Tn-Tm. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased from 37.9 A to 44.1 A when Ca(2+) bound to the regulatory sites of TnC. Titration of reconstituted thin filaments, containing AEDANS-labeled Tn-Tm and DABmal-labeled actin, with myosin subfragment 1 (S1) decreased the energy transfer efficiency, in both the presence and absence of Ca(2+). The maximum decrease occurred at well below stoichiometric levels of S1 binding to actin, showing a cooperative effect of S1 on the state of the thin filaments. S1:actin molar ratios of approximately 0.1 in the presence of Ca(2+), and approximately 0.3 in the absence of Ca(2+), were sufficient to cause a 50% reduction in normalized transfer efficiency. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased by approximately 7 A in the presence of Ca(2+) and by approximately 2 A in the absence of Ca(2+) when S1 bound to actin. Our results suggest that TnI's interaction with actin inhibits actomyosin ATPase activity by modulating the equilibria among active and inactive states of the thin filament. Structural rearrangements caused by myosin S1 binding to the thin filament, as detected by FRET measurements, are consistent with the cooperative behavior of the thin filament proteins.  相似文献   

13.
Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin–tropomyosin (Tm) complex on a reconstituted thin filament. We generated five single-cysteine mutants in the 146–174 region of rabbit skeletal muscle α-Tm. An energy donor probe was attached to a single-cysteine Tm residue, while an energy acceptor probe was located in actin Gln41, actin Cys374, or the actin nucleotide binding site. From these donor–acceptor pairs, FRET efficiencies were determined with and without Ca2+. Using the atomic coordinates for F-actin and Tm, we searched all possible arrangements for Tm segment 146–174 on F-actin to calculate the FRET efficiency for each donor–acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of the Tm segment on the F-actin filament. Furthermore, we generated a set of five single-cysteine mutants in each of the four Tm regions 41–69, 83–111, 216–244, and 252–279. Using the same procedures, we determined each segment's location on the F-actin filament. In the best-fit model, Tm runs along actin residues 217–236, which were reported to compose the Tm binding site. Electrostatic, hydrogen-bonding, and hydrophobic interactions are involved in actin and Tm binding. The C-terminal region of Tm was observed to contact actin more closely than did the N-terminal region. Tm contacts more residues on actin without Ca2+ than with it. Ca2+-induced changes on the actin–Tm contact surface strongly affect the F-actin structure, which is important for muscle regulation.  相似文献   

14.
Park S  Burghardt TP 《Biochemistry》2000,39(38):11732-11741
The fluorescence intensity difference between rabbit skeletal myosin subfragment 1 (S1) and nucleotide-bound or trapped S1 isolates ATP-sensitive tryptophans (ASTs) emission from the total tryptophan signal. Neutral (acrylamide) quenching of the ASTs is sensitive to the binding or trapping of nucleotide to the active site of S1. Anion (I(-)) quenching of the ASTs, sensitive to charge separation in the tryptophan micro environment, is negligible. These findings suggest the ASTs sense conformational change during ATPase from negatively charged surroundings. Specific chemical modifications of S1 identified the location of the ASTs. Trp131 was quenched by chemical modification, and its emission was isolated by taking the intensity difference between unmodified and modified S1. Trp131 fluorescence intensity and quenching constant do not distinguish among the bound or trapped nucleotides, suggesting that the vicinity of Trp131 does not change conformation during the ATPase cycle and eliminating Trp131 as an AST. Trp510 fluorescence was quenched by 5'-iodoacetamidofluorescein (5'IAF) modification of the reactive thiol (SH1) of S1. The tryptophan emission enhancement increment due to active site trapping decreases linearly with SH1 modification and extrapolates to 0 for 100% modification. These data identify Trp510 as the primary AST in skeletal S1 in agreement with observations from Dictyostelium (Batra and Manstein (1999) Biol. Chem. 380, 1017-1023) and smooth muscle S1 (Yengo et al. (2000) Biophys. J. 78, 242A). With Trp510 identified as the sole AST, fluorescence difference spectroscopy provides a novel means to monitor the concentration of myosin transient intermediates in ATP hydrolysis.  相似文献   

15.
The deletion mutant (D234Tm) of rabbit skeletal muscle alpha-tropomyosin, in which internal actin-binding pseudo-repeats 2, 3, and 4 are missing, inhibits the thin filament activated myosin-ATPase activity whether Ca(2+) ion is present or not [Landis et al. (1997) J. Biol. Chem. 272, 14051-14056]. Fluorescence resonance energy transfer (FRET) showed substantial changes in distances between Cys-60 or 250 of troponin T (TnT) and Gln-41 or Cys-374 of actin on wild-type thin filaments corresponding to three states of thin filaments [Kimura et al. (2002) J. Biochem. 132, 93-102]. Troponin T movement on mutant thin filaments reconstituted with D234Tm was compared with that on wild-type thin filaments to understand from which the functional deficiency of mutant thin filaments derives. The Ca(2+)-induced changes in distances between Cys-250 of TnT and Gln-41 or Cys-374 of F-actin were smaller on mutant thin filaments than on wild-type thin filaments. On the other hand, the distances between Cys-60 of TnT and Gln-41 or Cys-374 of F-actin on mutant thin filaments did not change at all regardless of whether Ca(2+) was present. Thus, FRET showed that the Ca(2+)-induced movement of TnT was severely impaired on mutant thin filaments. The rigor binding of myosin subfragment 1 (S1) increased the distances when the thin filaments were fully decorated with S1 in the presence and absence of Ca(2+). However, plots of the extent of S1-incuced movement of TnT against molar ratio of S1 to actin in the presence and absence of Ca(2+) showed that the S1-induced movement of TnT was also impaired on mutant thin filaments. The deficiency of TnT movement on mutant thin filaments causes the altered S1-induced movement of TnI, and mutant thin filaments consequently fail to activate the myosin-ATPase activity even in the presence of Ca(2+).  相似文献   

16.
Actin thin filaments containing bound tropomyosin (Tm) or tropomyosin troponin (Tm.Tn) exist in two states ("off" and "on") with different affinities for myosin heads (S1), which results in the cooperative binding of S1. The rate of S1 binding to, and dissociating from, actin, Tm.actin, and Tm.Tn.actin, monitored by light scattering (LS), was compared with the rate of change in state, monitored by the excimer fluorescence (Fl) of a pyrene label attached to Tm. The ATP-induced S1 dissociation showed similar exponential decreases in LS for actin.S1, Tm.actin.S1, and Tm.Tn.actin.S1 +/- Ca2+. The Fl change, however, showed a delay that was greater for Tm.Tn.actin than Tm.actin, independent of Ca2+. The S1 binding kinetics gave observed rate constants for the S1-induced change in state that were 5-6 times the observed rate constants of S1 binding to Tm.actin, which were increased to 10-12 for Tm.Tn.actin, independent of Ca2+. The rate of the Fl signals showed that the on/off states were in rapid equilibrium. These data indicate that the apparent cooperative unit for Tm.actin is 5-6 actin subunits rather than the minimum structural unit size of 7, and is increased to 10-12 subunits for Tm.Tn.actin, independent of the presence of Ca2+. Thus, Tm appears semi-flexible, and Tn increases communication between neighboring structural units. A general model for the dynamic transitions involved in muscle regulation is presented.  相似文献   

17.
Y Ishii  S S Lehrer 《Biochemistry》1985,24(23):6631-6638
The fluorescence of pyrene-TM [rabbit skeletal tropomyosin (TM) labeled at Cys with N-(1-pyrenyl)maleimide] consists of monomer and excimer bands [Betcher-Lange, S., & Lehrer, S.S. (1978) J. Biol. Chem. 253, 3757-3760]; an increase in excimer fluorescence with temperature is due to a shift in equilibrium from a chain-closed state (N) to a chain-open state (X) associated with a helix pretransition [Graceffa, P., & Lehrer, S.S. (1980) J. Biol. Chem. 255, 11296-11300]. In this study, we show that the presence of appreciable excimer fluorescence at temperatures below the N----X pretransition (initial excimer) is due to perturbation of the TM chain-chain interaction by the pyrenes at Cys-190. Fluorescence and ATPase titrations indicated that the label caused a decrease in TM binding to F-actin primarily due to reduced end to end TM interactions on the actin filament. Under conditions where pyrene-TM was bound to F-actin, however, the excimer fluorescence did not increase with temperature, indicating that F-actin stabilizes tropomyosin by inhibiting the N----X transition. The binding of myosin subfragment 1 (S1) to pyrene-TM-F-actin at low ratios to actin caused time-dependent changes in fluorescence. After equilibrium was reached, the initial excimer fluorescence was markedly reduced and remained constant over the pretransition temperature range. Further stabilization of tropomyosin conformation on F-actin is therefore associated with S1 binding. Effects of the binding of S1 to the F-actin-tropomyosin thin filament on the state of tropomyosin were studied by monitoring the monomer fluorescence of pyrene-TM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
F-actin has been specifically labeled with a fluorescent probe, dansyl aziridine, at cysteine-373 of the protein. The fluorescence property of the conjugated probe serves as a spectroscopic indicator of several processes in which actin participates. The sulfhydryl modification does not impair the G-F transformation of actin, nor does it affect the complex formation of actin and myosin or the dissociation of the complex by ATP as judged by viscosity measurements. However, both labeled actin and actin modified by N-ethylmaleimide, which also reacts at cysteine-373, stimulate the Mg2+-ATPase of myosin only about 75% as well as unmodified actin. The probe attached to actin exhibits a 65-nm blue shift of its emission maximum from 560 to 495 nm and a sixfold fluorescence enhancement indicating that it is located in a hydrophobic environment. The excitation spectrum of labeled actin indicates that a tryptophan and a tyrosine residue are close to the probe and transfer excitation energy to the dansyl fluorophore. Upon depolymerization of F-actin, the fluorescence intensity of labeled actin increases about 20%. The fluorescence of labeled actin is also enhanced by the addition of EDTA, ATP, and pyrophosphate, but Mg2+ antagonizes this effect reversibly. However, in the presence of 10 mm orthophosphate buffer (pH 7.4) these effects disappear. When labeled F-actin binds with myosin subfragment-1 (SF-1) or heavy meromyosin (HMM), the fluorescence of the actin adduct is enhanced. The fluorescence properties of labeled acto-SF-1 and acto-HMM become insensitive to EDTA and polyphosphates even in the absence of orthophosphate. These results suggest that the two-stranded helical structure of the F-actin filament is stabilized by the presence of phosphate and/or the binding of the myosin “head”.  相似文献   

19.
Troponin T (TnT) is an essential component of troponin (Tn) for the Ca(2+)-regulation of vertebrate striated muscle contraction. TnT consists of an extended NH(2)-terminal domain that interacts with tropomyosin (Tm) and a globular COOH-terminal domain that interacts with Tm, troponin I (TnI), and troponin C (TnC). We have generated two mutants of a rabbit skeletal beta-TnT 25-kDa fragment (59-266) that have a unique cysteine at position 60 (N-terminal region) or 250 (C-terminal region). To understand the spatial rearrangement of TnT on the thin filament in response to Ca(2+) binding to TnC, we measured distances from Cys-60 and Cys-250 of TnT to Gln-41 and Cys-374 of F-actin on the reconstituted thin filament by using fluorescence resonance energy transfer (FRET). The distances from Cys-60 and Cys-250 of TnT to Gln-41 of F-actin were 39.5 and 30.0 A, respectively in the absence of Ca(2+), and increased by 2.6 and 5.8 A, respectively upon binding of Ca(2+) to TnC. The rigor binding of myosin subfragment 1 (S1) further increased these distances by 4 and 5 A respectively, when the thin filaments were fully decorated with S1. This indicates that not only the C-terminal but also the N-terminal region of TnT showed the Ca(2+)- and S1-induced movement, and the C-terminal region moved more than N-terminal region. In the absence of Ca(2+), the rigor S1 binding also increased the distances to the same extent as the presence of Ca(2+) when the thin filaments were fully decorated with S1. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding both in the presence and absence of Ca(2+). However, plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed hyperbolic curve in the presence of Ca(2+) but sigmoidal curve in the absence of Ca(2+). FRET measurement of the distances from Cys-60 and Cys-250 of TnT to Cys-374 of actin showed almost the same results as the case of Gln-41 of actin. The present FRET measurements demonstrated that not only TnI but also TnT change their positions on the thin filament corresponding to three states of thin filaments (relaxed, Ca(2+)-induced or closed, and S1-induced or open states).  相似文献   

20.
Tropomyosin (Tm) binds along actin filaments, one molecule spanning four to seven actin monomers, depending on the isoform. Periodic repeats in the sequence have been proposed to correspond to actin binding sites. To learn the functional importance of length and the internal periods we made a series of progressively shorter Tms, deleting from two up to six of the internal periods from rat striated alpha-TM (dAc2--3, dAc2--4, dAc3--5, dAc2--5, dAc2--6, dAc1.5--6.5). Recombinant Tms (unacetylated) were expressed in Escherichia coli. Tropomyosins that are four or more periods long (dAc2--3, dAc2--4, and dAc3--5) bound well to F-actin with troponin (Tn). dAc2--5 bound weakly (with EGTA) and binding of shorter mutants was undetectable in any condition. Myosin S1-induced binding of Tm to actin in the tight Tm-binding "open" state did not correlate with actin binding. dAc3--5 and dAc2--5 did not bind to actin even when the filament was saturated with S1. In contrast, dAc2--3 and dAc2--4 did, like wild-type-Tm, requiring about 3 mol of S1/mol of Tm for half-maximal binding. The results show the critical importance of period 5 (residues 166--207) for myosin S1-induced binding. The Tms that bound to actin (dAc2--3, dAc2--4, and dAc3--5) all fully inhibited the actomyosin ATPase (+Tn) in EGTA. In the presence of Ca(2+), relief of inhibition by these Tms was incomplete. We conclude (1) four or more actin periods are required for Tm to bind to actin with reasonable affinity and (2) that the structural requirements of Tm for the transition of the regulated filament from the blocked-to-closed/open (relief of inhibition by Ca(2+)) and the closed-to-open states (strong Tm binding to actin-S1) are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号