首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
delta 4-3-Oxosteroid 5 beta-reductase catalysing reduction of delta 4-3-oxosteroids to give A/B cis-conformation was intraperitoneally injected into BALB/c strain mice with Ribi adjuvant. Monoclonal antibody specific for this enzyme was prepared from their spleen cells. Using this monoclonal antibody as a probe the enzyme was further purified using reversed phase liquid chromatography to determine amino-acid sequence protein-chemically. Attempts to determine the N-terminal amino acid failed, indicating that the N-terminal amino acid is blocked. The protein was therefore subjected to digestion with lysyl endopeptidase after alkylating with iodoacetate. The peptides thus formed were isolated and purified by reversed-phase high-performance liquid chromatography and their amino-acid sequences were determined. Using antibodies and oligonucleotides as probes a cDNA which contained a 978 bp long open reading frame encoding 326 amino-acid residues (Mr 37376) was isolated from rat liver cDNA libraries and the entire sequence of the protein was deciphered from its nucleotide sequence. The COS cells transfected with this cDNA revealed a versatile activity to reduce varied kinds of delta 4-3-oxosteroids, i.e. 7 alpha-hydroxy-4-cholesten-3-one, androstenedione and cortisone as postulated by Okuda and Okuda (1984, J. Biol. Chem. 259, 7519-7524) and Furuebisu et al. (1987, Biochim. Biophys. Acta 912, 110-114. With a newly established immunoblotting assay method several tissues and organs were surveyed and it was found that the enzyme exists only in the liver and there is an apparent difference between sexes as to the content of this enzyme. However, there was little if any difference in the amount of mRNAs between both sexes, which may indicates that the sexual difference of rat liver cytosol 5 beta-reductase is due to a posttranslational modification and/or degradation.  相似文献   

2.
From the cytosol fraction (supernatant fluid at 105,000 g) of chicken liver, 4-en-3-oxosteroid 5 beta-reductase (EC 1.3.1.23) was purified by ammonium sulfate precipitation, followed by Butyl Toyopearl, DEAE-Sepharose, Sephadex G-75 and hydroxylapatite column chromatographies. The enzyme activity was quantitated from amount of the 5 beta-reduced metabolites derived from [4-14C]testosterone. During the purification procedures, 17 beta-hydroxysteroid dehydrogenase which was present in the cytosol fraction was separated from 5 beta-reductase fraction by the Butyl Toyopearl column chromatography. By the DEAE-Sepharose column chromatography, 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were able to be removed from 5 beta-reductase fraction. The final enzyme preparation was apparently homogeneous on SDS-polyacrylamide gel electrophoresis. Purification was about 13,600-fold from the hepatic cytosol. The molecular weight of this enzyme was estimated as 37,000 Da by SDS-polyacrylamide gel electrophoresis and also by Sephadex G-75 gel filtration. For 5 beta-reduction of 4-en-3-oxosteroids, such as testosterone, androstenedione and progesterone, NADPH was specifically required as cofactor. Km of 5 beta-reductase for NADPH was estimated as 4.22 x 10(-6) M and for testosterone, 4.60 x 10(-6) M. The optimum pH of this enzyme ranged from pH 5.0 to 6.5 and other enzymic properties of the 5 beta-reductase were examined.  相似文献   

3.
delta 4-3-Ketosteroid 5 beta-reductase was purified about 230-fold from 100,000 X g supernatant of rat liver homogenate using 7 alpha-hydroxy-4-cholesten-3-one as substrate throughout. The purified enzyme was electrophoretically homogeneous, and its molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 37,000 and that determined by gel filtration chromatography on calibrated Sephadex G-100 column was 37,200. The absorption spectrum of the purified enzyme showed only a peak at 276 nm due to aromatic amino acids, precluding the presence of a prosthetic group such as flavine in the molecule. The enzyme is highly labile in a low buffer concentration, but is markedly stabilized in the presence of 20% glycerol in 10 mM phosphate buffer. Higher buffer concentration such as 300 mM potassium phosphate buffer was also effective to prevent deterioration in the absence of glycerol, but the effect was somewhat lower compared to glycerol. The purified enzyme showed the activity toward a variety of substrates including testosterone, cortisol, cortisone, progesterone, 4-androstene-3,17-dione, 7 alpha-hydroxy-4-cholesten-3-one, and 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one. The optimal pH for the 5 beta-reduction of 7 alpha-hydroxy-4-cholesten-3-one was 7.4, and the cofactor required for the reaction was NADPH, while NADH revealed no effect. The enzyme activity was inhibited by p-chloromercuribenzoate, but its inhibition was prevented by the presence of a reduced form of glutathione.  相似文献   

4.
AKR1D1 (steroid 5beta-reductase) reduces all Delta(4)-3-ketosteroids to form 5beta-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an alpha,beta-unsaturated ketone by 5beta-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the beta-face of a Delta(4)-3-ketosteroid yields a cis-A/B-ring configuration with an approximately 90 degrees bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human Delta(4)-3-ketosteroid 5beta-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP(+) at 1.79- and 1.35-A resolution (HEPES bound in the active site), NADP(+) and cortisone at 1.90-A resolution, NADP(+) and progesterone at 2.03-A resolution, and NADP(+) and testosterone at 1.62-A resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP(+). This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr(58) and Glu(120). The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.  相似文献   

5.
delta 4-3-Ketosteroid 5 beta-reductase was purified from male rat liver cytosol. The purification scheme consisted of column chromatographies on hydroxylapatite and DEAE-Sepharose, chromatofocusing, and Sephadex G-75 gel filtration followed by sodium dodecyl sulfate-gel electrophoresis. The column chromatography steps gave a 100-fold purification and resulted in a 90% pure preparation as judged by sodium dodecyl sulfate-gel electrophoresis. Kinetic properties with 4-androstene-3,17-dione as substrate were established for the enzyme, and its activity regarding three other delta 4-3-ketosteroids, testosterone, progesterone, and cortisol, was investigated. The relative rates of reduction of these steroids were 1.0, 0.8, 0.7, and 0.62, respectively. The electrophoretically purified 5 beta-reductase, with an Mr of 38,000, was used for immunization of rabbits. The antiserum was shown to be monospecific as judged from immunoblotting of electrophoretically separated rat liver cytosolic proteins. Immunological reactive protein and enzymatic 5 beta-reductase activity co-purified in the chromatographic steps. The sex difference in enzyme activity, 0.26 versus 0.10 nmol of product/mg of proteins/min for males and females, respectively, was shown to be due to a difference in concentration of enzyme protein. The 5 beta-reductase was calculated to constitute 1% of the total cytosolic proteins in male livers, whereas the corresponding figure for female livers was 0.3%.  相似文献   

6.
Y J Abul-Hajj 《Steroids》1979,33(1):115-124
Steroid delta 4-5 alpha- and delta 4-5 beta-reductase activity was determined in 16 human mammary tumors and 8 DMBA-induced rat mammary tumors using a spectrophotometric assay. Steroid delta 4-5 alpha-reductase was present in all tumors investigated while delta 4-5 beta-reductase was detected in only 6 estrogen receptor negative human breast tumors and absent in all estrogen receptor positive human breast tumors as well as in all rat mammary tumors. Further support for the presence of delta 4-5 beta-reductase was established by using a dual-labelling technique consisting of incubating tumor slices with [14C] testosterone and adding [3H] etiocholanolone, [3H] testosterone and [3H]-5 alpha-dihydrotestosterone at the end of the reaction. Following extraction and chromic acid oxidation, 4-androstenedione, 5 beta-androstanedione and 5 alpha-androstanedione were isolated and purified, and the constancy of the 14C/3H ratio was used as proof of 5 alpha-reductase and 5 beta-reductase. These results were shown to be consistent with the data obtained using the spectrophotometric assay.  相似文献   

7.
Cell extracts prepared anaerobically from Clostridium innocuum and Clostridium paraputrificum reduced delta 4-3-ketosteroids to 3 beta 5 beta and 3 alpha 5 beta derivatives, respectively. delta 4-3-Ketosteroid-5 beta-reductase (5 beta-reductase) from both organisms required NADH for activity. 5 beta-Reductase from C. innocuum had a pH optimum of 5.0. The substrate concentration at half-maximal reaction velocity was 4.2 microM, and a specific activity of 17 nmol product formed/h per mg protein was determined using 4-pregnen-3,20-dione (progesterone) as a substrate. delta 4-3-Ketosteroid-5 beta-reductase from C. innocuum reduced progesterone and testosterone, but not 4-cholesten-3-one, to corresponding 3-keto-5 beta derivatives. A relative molecular (Mr) weight of 80 000 was estimated for 5 beta-reductase using HPLC-gel filtration chromatography. 3 beta-Hydroxysteroid dehydrogenase in cell extracts of C. innocuum was oxygen sensitive and required NADH for activity. An Mr of 80 000 was estimated for 3 beta-hydroxysteroid dehydrogenase. However, 5 beta-reductase and 3 beta-hydroxysteroid dehydrogenase activities were separated using an HPLC-DEAE chromatography technique.  相似文献   

8.
The metabolism of cortisol by human liver homogenates has been studied. Cortisol delta 4-reductase and dihydrocortisol-3-oxidoreductase activities were distributed in all subcellular fractions. The products of the soluble enzymes were identified. Cortisol and 5 beta-dihydrocortisol were reduced to 3 alpha,5 beta-tetrahydrocortisol, and 5 alpha-dihydrocortisol was reduced to 3 alpha,5 alpha-tetrahydrocortisol. The soluble enzymes showed a wide range of substrate specificity. The 21 substituted cortisol derivatives were not metabolized. The apparent Km values of cortisol delta 4-5 beta-reductase and dihydrocortisol-3 alpha-oxidoreductase for their substrates (cortisol, 5 alpha-dihydrocortisol, and 5 beta-dihydrocortisol) all ranged from 18 to 27 microM. Dexamethasone inhibited the reduction of all of these substrates and the inhibition was abolished by 21 substitution of the dexamethasone. Testosterone was a competitive inhibitor of the reduction of cortisol, 5 alpha-dihydrocortisol, and 5 beta-dihydrocortisol with a Ki ranging from 11 to 32 microM. NADPH was the preferred cofactor for the cortisol delta 4-5 beta-reductase and dihydrocortisol-3 alpha-oxidoreductase. No end product inhibition was observed.  相似文献   

9.
delta 1-Pyrroline-5-carboxylate reductase (L-proline:NAD(P)+ 5-oxidoreductase, EC 1.5.1.2) has been purified from rat lens and biochemically characterized. Purification steps included ammonium sulfate fractionation, affinity chromatography on Amicon Matrex Orange A, and gel filtration with Sephadex G-200. These steps were carried out at ambient temperature (22 degrees C) in 20 mM sodium phosphate/potassium phosphate buffer (pH 7.5) containing 10% glycerol, 7 mM mercaptoethanol and 0.5 mM EDTA. The enzyme, purified to apparent homogeneity, displayed a molecular weight of 240 000 by gel chromatography and 30 000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme is composed of eight subunits. The purified enzyme displays a pH optimum between 6.5 and 7.1 and is inhibited by heavy metal ions and p-chloromercuribenzoate. Kinetic studies indicated Km values of 0.62 mM and 0.051 mM for DL-pyrroline-5-carboxylate as substrate when NADH and NADPH respectively were employed as cofactors. The Km values for the cofactors NADH and NADPH with DL-pyrroline-5-carboxylate as substrate were 0.37 mM and 0.006 mM, respectively. With L-pyrroline-5-carboxylate as substrate, Km values of 0.21 mM and 0.022 mM were obtained for NADH and NADPH, respectively. Enzyme activity is potentially inhibited by NADP+ and ATP, suggesting that delta 1-pyrroline-5-carboxylate reductase may be regulated by the energy level and redox state of the lens.  相似文献   

10.
delta 4-Steroid-5 alpha-reductase (3-oxo-5 alpha-steroid:NADP+ delta 4-oxidoreductase, EC 1.3.1.22), is a membrane-bound enzyme. In the ventral prostate of the rat, its activity is found within the nuclear envelope. Solubilization of this enzyme can only be achieved in the presence of detergents. We studied the inhibitory effect of various detergents on 5 alpha-reductase activity as a function of detergent concentration, of pH, of incubation time, of salt concentration and of additives to the buffer system. Four detergents (Lubrol WX, CHAPS, L-alpha-lysophosphatidylcholine and octyl D-glucopyranoside) were selected for subsequent solubilization studies. The overall recovery of solubilized enzyme activity was about 30% when compared to 100% of 5 alpha-reductase activity found in freshly prepared nuclei. Up to 20-30% of the nuclear proteins were extracted during the solubilization procedure. Among the various treatments tested, a concentration of 3 mg/ml L-alpha-lysophosphatidylcholine per 10 mg/ml of nuclear protein in the presence of 5 mM MgCl2, 0.1 M KCl, 0.1 M sodium citrate and 5 mM NADPH yielded the maximal enzymic activity of 56%, 15% of the nuclear proteins being solubilized in an active and stable form. The activity in these extracts could be kept stable for 2 days at 4 degrees C with a recovery of 75% of enzymic activity. A 3-fold increase of specific 5 alpha-reductase activity was obtained during solubilization under optimal conditions.  相似文献   

11.
Purification and properties of low-Km aldehyde reductase from ox brain   总被引:1,自引:0,他引:1  
A low-Km aldehyde reductase (alcohol:NADP+ oxidoreductase, EC 1.1.1.2), which may be identical with aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21), has been purified from ox brain to homogeneity. It was shown to be a monomer with Mr values of 31 000 and 35 100 being obtained by gel filtration and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, respectively. The enzyme catalyses the NADPH-dependent reduction of a number of aromatic and sugar aldehydes. The activity of the enzyme with 133 microM NADH was about one-third of that with 120 microM NADPH. Activity with both these coenzymes was optimum at pH 6.2 and was inhibited by increasing the ionic strength with KCl, NaCl or NaNO3. In contrast, the activity was stimulated by sodium phosphate. The activity with NADH as the coenzyme was more sensitive to stimulation by phosphate and to inhibition by increasing ionic strength than that determined with NADPH.  相似文献   

12.
Glycerol:NADP+ 2-oxidoreductase (EC 1.1.1.156) was isolated from Schizosaccharomyces pombe, purified and characterized. It had an Mr of 57,000, and SDS-PAGE revealed two polypeptides, of Mr 25,000 and 30,000. Its coenzyme requirement was satisfied exclusively by NADP. The pH optimum for glycerol oxidation was 9.5, for dihydroxyacetone reduction 6.0. Rates of oxidation with some structurally related diols were three- to six-fold lower than for glycerol, while glyceraldehyde and other carbonyl compounds showed negligible rates of reduction. Neither monovalent nor divalent cations activated the enzyme. Apparent Km and Vmax values were determined. The enzyme is similar to glycerol dehydrogenases isolated from Mucor javanicus and from Dunaliella parva but differs considerably from the glycerol:NAD+ 2-oxidoreductase of S. pombe.  相似文献   

13.
The basis for the physical association of 3-dehydroquinate dehydratase (3-dehydroquinate hydrolyase, EC 4.2.1.10) and shikimate dehydrogenase (shikimate: NADP+ 3-oxidoreductase, EC 1.1.1.25) in higher plants was investigated. The enzymes were extracted from the moss Physcomitrella patens and were purified to homogeneity. Determinations of subunit sizes were made by sodium dodecyl sulfate gel electrophoresis and gel exclusion chromatography in 6 M guanidinium chloride. Results from these studies demonstrate that both enzyme activities are carried out by a single polypeptide.  相似文献   

14.
Aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) has been purified 1500-fold from porcine brain in a four-step procedure employing Blue-Sepharose 6B affinity chromatography. The purified enzyme was shown to be apparently homogeneous by polyacrylamide gel electrophoresis. The enzyme is a single chain polypeptide of molecular weight 40 000, pH optimum 5.0 K(app)(xylose) 4 mM; K(app)(NADPH) 3 microM. The relative substrate activities, activation with sulfate ion, and limited oxidative and NADH-related reductive activities confirm the classification of this enzyme as aldolase reductase. The activity of the reductase with p-nitrobenzaldehyde and 3-indolacetaldehyde and the similarity of its physical properties with the 'low Km' aldehyde reductase of porcine brain previously reported indicates that these enzymes may be identical.  相似文献   

15.
Aldehyde reductase (alcohol:NADP+ oxidoreductase, EC 1.1.1.2), aldose reductase (alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21) and carbonyl reductase (secondary-alcohol:NADP+ oxidoreductase, EC 1.1.1.184) constitute the enzyme family of the aldo-keto reductases, a classification based on similar physicochemical properties and substrate specificities. The present study was undertaken in order to obtain information about the structural relationships between the three enzymes. Treatment of human aldehyde and carbonyl reductase with phenylglyoxal and 2,3-butanedione caused a complete and irreversible loss of enzyme activity, the rate of loss being proportional to the concentration of the dicarbonyl reagents. The inactivation of aldehyde reductase followed pseudo-first-order kinetics, whereas carbonyl reductase showed a more complex behavior, consistent with protein modification cooperativity. NADP+ partially prevented the loss of activity of both enzymes, and an even better protection of aldehyde reductase was afforded by the combination of coenzyme and substrate. Aldose reductase was partially inactivated by phenylglyoxal, but insensitive to 2,3-butanedione. The degree of inactivation with respect to the phenylglyoxal concentration showed saturation behavior. NADP+ partially protected the enzyme at low phenylglyoxal concentrations (0.5 mM), but showed no effect at high concentrations (5 mM). These findings suggest the presence of an essential arginine residue in the substrate-binding domain of aldehyde reductase and the coenzyme-binding site of carbonyl reductase. The effect of phenylglyoxal on aldose reductase may be explained by the modification of a reactive thiol or lysine rather than an arginine residue.  相似文献   

16.
The enzyme 5beta-reductase catalyzes the reduction of the 4-ene of 3-ketosteroids, converting them into 5beta-dihydro-3-ketosteroids and, thus, could be involved in the metabolism of 4-cholestene-3-one, progesterone, 17~-hydroxyprogesterone, aldosterone, corticosterone, cortisol, 4-androstenedione, and testosterone. In this study, we report the genomic structure of a human 5beta-reductase gene, its tissue distribution, the characterization of an intronless pseudogene and the substrate selectivity of the enzyme. The gene coding for the active 5beta-reductase contains nine exons like most members of the aldo-keto reductase family, but the sequence covered by the gene, more than 42 kb, is much longer than the sequence of other members of this family. There are many large introns, especially introns 3, 4 and 7 that span approx. 7 kb, and intron 1 that contains more than 10 kb. Northern blot analysis showed three band sizes of 1.3, 2.2 and 2.7 kb. The 1.3 and 2.7 kb bands are highly expressed in the liver while weaker 2.2 and 1.3 kb bands have been observed in the testis and colon, respectively. We also identified an intronless gene having 86% homology with the 5beta-reductase cDNA sequence. Since its sequence contains many stop codons, this gene is most probably a pseudogene. To determine more precisely the substrate selectivity of the enzyme, we established a stable cell line expressing human 5beta-reductase in transformed embryonic kidney (HEK-293) cells. The transfected cells efficiently catalyze the transformation of progesterone, androstenedione, 17alpha-hydroxyprogesterone and testosterone. However, they catalyze much less efficiently the transformation of compounds containing an 11beta-hydroxy group, such as aldosterone, corticosterone and cortisol. In addition to its role in cholesterol catabolism, it is well recognized that 5beta-reductase inactivates active androgens. Indeed, 5beta-dihydrotestosterone (5beta-DHT), the product of the reduction of testosterone by 5beta-reductase, is not active while its 5~-isomer (DHT) is the most potent natural androgen. Recent findings show that 5beta-pregnanes are active ligands in the induction of CYP3A through the orphan receptor hPAR. Our results thus open an opportunity for studying the new role of 5beta-reductase in the formation of a new type of active steroids.  相似文献   

17.
Ingestion of licorice or treatment with chemical derivatives of glycyrrhetinic acid (GA), an active principle of licorice, can cause hypertension, sodium retention, and hypokalemia. Although GA has been shown to inhibit 11 beta-hydroxysteroid dehydrogenase, it may not be the only hepatic enzyme affected by this licorice derivative. Therefore, we studied the effects of GA on other major hepatic steroid-metabolizing enzymes from adrenalectomized male rats using aldosterone as the substrate; namely, delta 4-5 alpha- and delta 4-5 beta-reductases and 3 alpha- and 3 beta-hydroxysteroid dehydrogenases (3 alpha- and 3 beta-HSD). From these in vitro studies, we demonstrated that GA does not affect either microsomal 5 alpha-reductase or cytosolic 3 alpha-HSD activity. However, GA is a potent inhibitor of cytosolic 5 beta-reductase; the K(is) and K(ii) were calculated from enzyme kinetic analysis to be 6.79 and 5.41 microM, respectively, using the Cleland equation, indicating that GA is a noncompetitive inhibitor of aldosterone. In addition, GA specifically inhibited microsomal 3 beta-HSD enzyme activity by what appears to be a competitive inhibition mechanism, causing a build-up of the intermediate, 5 alpha-dihydroaldosterone (DHAldo). Thus, this study has indicated that GA has a profound effect on hepatic ring A-reduction of aldosterone. Inhibition of 5 beta-reductase and 3 beta-HSD results in decreased synthesis of both 3 alpha, 5 beta-tetrahydroaldosterone (THAldo) and 3 beta, 5 alpha-THAldo and, hence, accumulation of aldosterone and 5 alpha-DHAldo, both potent mineralocorticoids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
[delta]1-Pyrroline-5-carboxylate (P5C) dehydrogenase (EC 1.5.1.12), the second enzyme in the proline catabolic pathway and a catalyst for the oxidation of P5C to glutamate, was purified from cultured potato (Solanum tuberosum L. var Desiree) cells. Homogeneous enzyme preparations were obtained by a three-step procedure that used anion-exchange, adsorption, and substrate elution chromatography. A 1600-fold purification was achieved, with a recovery of one-third of the initial activity. The purified enzyme was characterized with respect to structural, kinetic, and biochemical properties. It appeared to be an [alpha]-4 tetramer with subunits of an apparent molecular mass of about 60 kD and had a mildly acidic isoelectric point value. Potato P5C dehydrogenase had Michaelis constant values of 0.11 and 0.46 mM for NAD+ and P5C, respectively. Although NAD+ was the preferred electron acceptor, NADP+ also yielded an unusually high rate, and thus was found to serve as a substrate. Maximal activity was observed at pH values in the 7.3 to 8.3 range, and was progressively inhibited by chloride ions, a finding that strengthens recent suggestions that hyperosmotic stress negatively modulates in vivo proline oxidation.  相似文献   

19.
delta1-Pyrroline-5-carboxylate (PCA) reductase [L-proline:NAD(P)+5-oxidoreductase, EC 1.5.1.2] has been purified over 200-fold from Escherichia coli K-12. It has a molecular weight of approximately 320,000. PCA reductase mediates the pyridine nucleotide-linked reduction of PCA to proline but not the reverse reaction (even at high substrate concentrations). The partially purified preparation is free of competing pyridine nucleotide oxidase, PCA dehydrogenase, and proline oxidase activities. The Michaelis constant (Km) values for the substrate, PCA, with reduced nicotinamide adenine dinucleotide phosphate (NADPH) or NADH as cofactor are 0.15 and 0.14 mM, respectively. The Km values determined for NADPH and NADH are 0.03 and 0.23 mM, respectively. Although either NADPH or NADH can function as cofactor, the activity observed with NADPH is severalfold greater. PCA reductase is not repressed by growth in the presence of proline, but it is inhibited by the reaction end products, proline and NADP.  相似文献   

20.
Tryptic digestion of a multifunctional enzyme from porcine liver containing methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), methenyltetrahydrofolate cyclohydrolase (5,10-methenyltetrahydrofolate 5-hydrolase, EC 3.5.4.9) and formyltetrahydrofolate synthetase (formate:tetrahydrofolate ligase, EC 6.3.4.3) activities destroys the synthetase. A fragment containing both dehydrogenase and cyclohydrolase activities has been isolated by affinity chromatography on an NADP+-Sepharose affinity column. The purified fragment is homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis where its molecular weight was determined as 33 000 +/- 1200 compared with 100 000 for the undigested protein. The cyclohydrolase activity retains sensitivity to inhibition by NADP+, MgATP and ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号