首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snider MJ  Wolfenden R 《Biochemistry》2001,40(38):11364-11371
Kinetic measurements have shown that substantial enthalpy changes accompany substrate binding by cytidine deaminase, increasing markedly as the reaction proceeds from the ground state (1/K(m), DeltaH = -13 kcal/mol) to the transition state (1/K(tx), DeltaH = -20 kcal/mol) [Snider, M. J., et al. (2000) Biochemistry 39, 9746-9753]. In the present work, we determined the thermodynamic changes associated with the equilibrium binding of inhibitors by cytidine deaminase by isothermal titration calorimetry and van't Hoff analysis of the temperature dependence of their inhibition constants. The results indicate that the binding of the transition state analogue 3,4-dihydrouridine DeltaH = -21 kcal/mol), like that of the transition state itself (DeltaH = -20 kcal/mol), is associated with a large favorable change in enthalpy. The significantly smaller enthalpy change that accompanies the binding of 3,4-dihydrozebularine (DeltaH = -10 kcal/mol), an analogue of 3,4-dihydrouridine in which a hydrogen atom replaces this inhibitor's 4-OH group, is consistent with the view that polar interactions with the substrate at the site of its chemical transformation play a critical role in reducing the enthalpy of activation for substrate hydrolysis. The entropic shortcomings of 3,4-dihydrouridine, in capturing all of the free energy involved in binding the actual transition state, may arise from its inability to displace a water molecule that occupies the binding site normally occupied by product ammonia.  相似文献   

2.
Sharrow SD  Novotny MV  Stone MJ 《Biochemistry》2003,42(20):6302-6309
The mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT) binds to an occluded, nonpolar cavity in the mouse major urinary protein-I (MUP-I). The thermodynamics of this interaction have been characterized using isothermal titration calorimetry (ITC). MUP-I-SBT binding is accompanied by a large favorable enthalpy change (DeltaH = -11.2 kcal/mol at 25 degrees C), an unfavorable entropy change (-TDeltaS = 2.8 kcal/mol at 25 degrees C), and a negative heat capacity change [DeltaC(p)() = -165 cal/(mol K)]. Thermodynamic analysis of binding between MUP-I and several 2-alkyl-4,5-dihydrothiazole ligands indicated that the alkyl chain contributes more favorably to the enthalpy and less favorably to the entropy of binding than would be expected on the basis of the hydrophobic desolvation of short-chain alcohols. However, solvent transfer experiments indicated that desolvation of SBT is accompanied by a net unfavorable change in enthalpy (DeltaH = +1.0 kcal/mol) and favorable change in entropy (-TDeltaS = -1.8 kcal/mol). These results are discussed in terms of the possible physical origins of the binding thermodynamics, including (1) hydrophobic desolvation of both the protein and the ligand, (2) formation of a buried water-mediated hydrogen bond network between the protein and ligand, (3) formation of strong van der Waals interactions, and (4) changes in the structure, dynamics, and/or hydration of the protein upon binding.  相似文献   

3.
To obtain a clearer understanding of the forces involved in transition state stabilization by Escherichia coli cytidine deaminase, we investigated the thermodynamic changes that accompany substrate binding in the ground state and transition state for substrate hydrolysis. Viscosity studies indicate that the action of cytidine deaminase is not diffusion-limited. Thus, K(m) appears to be a true dissociation constant, and k(cat) describes the chemical reaction of the ES complex, not product release. Enzyme-substrate association is accompanied by a loss of entropy and a somewhat greater release of enthalpy. As the ES complex proceeds to the transition state (ES), there is little further change in entropy, but heat is taken up that almost matches the heat that was released with ES formation. As a result, k(cat)/K(m) (describing the overall conversion of the free substrate to ES is almost invariant with changing temperature. The free energy barrier for the enzyme-catalyzed reaction (k(cat)/K(m)) is much lower than that for the spontaneous reaction (k(non)) (DeltaDeltaG = -21.8 kcal/mol at 25 degrees C). This difference, which also describes the virtual binding affinity of the enzyme for the activated substrate in the transition state (S), is almost entirely enthalpic in origin (DeltaDeltaH = -20.2 kcal/mol), compatible with the formation of hydrogen bonds that stabilize the ES complex. Thus, the transition state affinity of cytidine deaminase increases rapidly with decreasing temperature. When a hydrogen bond between Glu-91 and the 3'-hydroxyl moiety of cytidine is disrupted by truncation of either group, k(cat)/K(m) and transition state affinity are each reduced by a factor of 10(4). This effect of mutation is entirely enthalpic in origin (DeltaDeltaH approximately 7.9 kcal/mol), somewhat offset by a favorable change in the entropy of transition state binding. This increase in entropy is attributed to a loss of constraints on the relative motions of the activated substrate within the ES complex. In an Appendix, some objections to the conventional scheme for transition state binding are discussed.  相似文献   

4.
Chopra S  Lynch R  Kim SH  Jackson M  Howell EE 《Biochemistry》2006,45(21):6596-6605
R67 dihydrofolate reductase (DHFR) is a novel homotetrameric protein that possesses 222 symmetry and a single, voluminous active site pore. This symmetry poses numerous limitations on catalysis; for example, two dihydrofolate (DHF) molecules or two NADPH molecules, or one substrate plus one cofactor can bind. Only the latter combination leads to catalysis. To garner additional information on how this enzyme facilitates transition-state formation, the temperature dependence of binding and catalysis was monitored. The binding of NADPH and DHF is enthalpy-driven. Previous primary isotope effect studies indicate hydride transfer is at least partially rate-determining. Accordingly, the activation energy associated with transition-state formation was measured and is found to be 6.9 kcal/mol (DeltaH(++)(25) = 6.3 kcal/mol). A large entropic component is also found associated with catalysis, TDeltaS(++)(25) = -11.3 kcal/mol. The poor substrate, dihydropteroate, binds more weakly than dihydrofolate (DeltaDeltaG = 1.4 kcal/mol) and displays a large loss in the binding enthalpy value (DeltaDeltaH = 3.8 kcal/mol). The k(cat) value for dihydropteroate reduction is decreased 1600-fold compared to DHF usage. This effect appears to derive mostly from the DeltaDeltaH difference in binding, demonstrating that the glutamate tail is important for catalysis. This result is surprising, as the para-aminobenzoyl-glutamate tail of DHF has been previously shown to be disordered by both NMR and crystallography studies. Viscosity studies were also performed and confirmed that the hydride transfer rate is not sensitive to sucrose addition. Surprisingly, binding of DHF, by both K(m) and K(d) determination, was found to be sensitive to added viscogens, suggesting a role for water in DHF binding.  相似文献   

5.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

6.
The mechanism of recognition of proteins and peptides by antibodies and the factors determining binding affinity and specificity are mediated by essentially the same features. However, additional effects of the usually unfolded and flexible solution structure of peptide ligands have to be considered. In an earlier study we designed and optimized six peptides (pepI to pepVI) mimicking the discontinuous binding site of interleukin-10 for the anti-interleukin-10 monoclonal antibody (mab) CB/RS/1. Three of them were selected for analysis of their solution conformation by circular dichroism measurements. The peptides differ in the content of alpha-helices and in the inducibility of helical secondary structures by trifluoroethanol. These properties, however, do not correlate with the binding affinity. PepVI, a 32-mer cyclic epitope mimic, has the highest affinity to mab CB/RS/1 identified to date. CD difference spectroscopy suggests an increase of the alpha-helix content of pepVI with complex formation. Binding of pepVI to mab CB/RS/1 is characterized by a large negative, favorable binding enthalpy and a smaller unfavorable loss of entropy (DeltaH degrees = -16.4 kcal x mol(-1), TDeltaS degrees = -6.9 kcal x mol(-1)) resulting in DeltaG degrees = -9.5 kcal x mol(-1) at 25 degrees C as determined by isothermal titration calorimetry. Binding of pepVI is enthalpically driven over the entire temperature range studied (10-35 degrees C). Complex formation is not accompanied by proton uptake or release. A negative heat capacity change DeltaC(p) of -0.354 kcal x mol(-1) x K(-1) was determined from the temperature dependence of DeltaH degrees. The selection of protein mimics with the observed thermodynamic properties is promoted by the applied identification and iterative optimization procedure.  相似文献   

7.
This study examines the characteristics of binding of berberine to the human telomeric d[AG(3)(T(2)AG(3))(3)] quadruplex. By employing UV-visible spectroscopy, fluorescence spectroscopy and isothermal titration calorimetry, we found that the binding affinity of berberine to the human telomeric quadruplex is 10(6). The complete thermodynamic profile for berberine binding to the quadruplex, at 25 degrees C, shows a small negative enthalpy (DeltaH) of -1.7 kcal.mol(-1), an entropy change with TDeltaS of +6.5 kcal.mol(-1), and an overall favorable free energy (DeltaG) of -8.2 kcal.mol(-1) .Through the temperature dependence of DeltaH, we obtained a heat capacity (DeltaC(p)) of -94 (+/- 5) cal.mol(-1).K(-1). The osmotic stress method revealed that there is an uptake of 13 water molecules in the complex relative to the free reactants. Furthermore, the molecular modeling studies on different quadruplex-berberine complexes show that berberine stacking at the external G-quartet is mainly aided by the pi-pi interaction and the stabilization of the high negative charge density of O6 of guanines by the positively charged N7 of berberine. The theoretical heat capacity (DeltaC(p)) values for quadruplex-berberine models are -89 and -156 cal.mol(-1).K(-1).  相似文献   

8.
Guan R  Ho MC  Brenowitz M  Tyler PC  Evans GB  Almo SC  Schramm VL 《Biochemistry》2011,50(47):10408-10417
Human 5'-methylthioadenosine phosphorylase (MTAP) links the polyamine biosynthetic and S-adenosyl-l-methionine salvage pathways and is a target for anticancer drugs. p-Cl-PhT-DADMe-ImmA is a 10 pM, slow-onset tight-binding transition state analogue inhibitor of the enzyme. Titration of homotrimeric MTAP with this inhibitor established equivalent binding and independent catalytic function of the three catalytic sites. Thermodynamic analysis of MTAP with tight-binding inhibitors revealed entropic-driven interactions with small enthalpic penalties. A large negative heat capacity change of -600 cal/(mol K) upon inhibitor binding to MTAP is consistent with altered hydrophobic interactions and release of water. Crystal structures of apo MTAP and MTAP in complex with p-Cl-PhT-DADMe-ImmA were determined at 1.9 and 2.0 ? resolution, respectively. Inhibitor binding caused condensation of the enzyme active site, reorganization at the trimer interfaces, the release of water from the active sites and subunit interfaces, and compaction of the trimeric structure. These structural changes cause the entropy-favored binding of transition state analogues. Homotrimeric human MTAP is contrasted to the structurally related homotrimeric human purine nucleoside phosphorylase. p-Cl-PhT-DADMe-ImmA binding to MTAP involves a favorable entropy term of -17.6 kcal/mol with unfavorable enthalpy of 2.6 kcal/mol. In contrast, binding of an 8.5 pM transition state analogue to human PNP has been shown to exhibit the opposite behavior, with an unfavorable entropy term of 3.5 kcal/mol and a favorable enthalpy of -18.6 kcal/mol. Transition state analogue interactions reflect protein architecture near the transition state, and the profound thermodynamic differences for MTAP and PNP suggest dramatic differences in contributions to catalysis from protein architecture.  相似文献   

9.
This investigation examined the molecular mechanisms that enable the alphaIIbbeta3 integrin to bind efficiently, tightly, and selectively to echistatin, an RGD disintegrin. We used surface plasmon resonance spectroscopy to measure the rate, extent, and stability of complexes formed between micellar alphaIIbbeta3 and recombinant echistatin (rEch) mutants, immobilized on the surface of a biosensor chip. alphaIIbbeta3 bound readily and tightly to wild-type RGD-rEch and RGDF-rEch but not to RGA-rEch or AGD-rEch, demonstrating that both of those charged moieties contribute to integrin recognition. van't Hoff analysis of the temperature dependence of the RGD-rEch K d data yielded an unfavorable enthalpy change, Delta H degrees = 14 +/- 3 kcal/mol, offset by a favorable entropy term, TDelta S degrees = 23 +/- 3 kcal/mol. Eyring analysis of the temperature dependence of the kinetic parameters yielded Delta H a degrees (++) = 9 +/- 2 kcal/mol and TDelta S a degrees (++) = -4 +/- 2 kcal/mol, indicating that a substantial activation enthalpy barrier and a smaller activation entropy hinder assembly of the encounter complex. Thus, equilibrium thermodynamic data demonstrate that entropy is the dominant factor stabilizing integrin:echistatin binding, while transition-state thermodynamic parameters indicate that the rate of complex formation is enthalpy-limited. When electrostatic contacts are the major source of receptor:ligand stability, theory and experiment indicate that entropy-favorable ion-pair desolvation often provides the driving force for molecular recognition.  相似文献   

10.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

11.
W M Kati  S A Acheson  R Wolfenden 《Biochemistry》1992,31(32):7356-7366
Nebularine undergoes hydration at the active site of adenosine deaminase, in a reaction analogous to a partial reaction in the displacement of ammonia from adenosine by water, to generate an inhibitory complex that captures much of the binding affinity expected of an ideal transition-state analogue. Enzyme affinities of several compounds related to nebularine 1,6-hydrate, and to its stable analog 2'-deoxycoformycin, were compared in an effort to identify the structural origins of strong binding. Binding of the stable transition-state analog inhibitor 2'-deoxycoformycin was rendered 9.8 kcal/mol less favorable by removal of substituent ribose, 9.7 kcal/mol less favorable by inversion of the 8-hydroxyl substituent of the diazepine ring, and 10.0 kcal/mol less favorable by removal of atoms 4-6 of the diazepine ring. Binding of the unstable transition-state analog nebularine hydrate was rendered at least 9.9 kcal/mol less favorable by removal of the 6-hydroxyl group and 10.2 kcal/mol less favorable by removal of atoms 1-3 of the pyrimidine ring. In each case, the enzyme exhibited only modest affinity (Kd greater than or equal to 10(-2) M) for the "missing piece", indicating that incorporation of 2 binding determinants within a single molecule permits an additional 7-12 kcal/mol of intrinsic binding energy to be manifested as observed binding energy. These results are consistent with earlier indications that adenosine deaminase may use 10.5 kcal/mol of the intrinsic free energy of binding of the two substrates to place them in positions appropriate for reaction at the active site, overcoming the unfavorable entropy change of -35 eu for the equilibrium of 1,6-hydration of purine ribonucleoside and reducing the equilibrium constant for attainment of the transition state in deamination of adenosine. Thus, adenosine deaminase may achieve up to 8 orders of magnitude of its catalytic power by converting the nonenzymatic, bimolecular, hydration reaction to a monomolecular reaction at its active site. Several new 6-substituted 1,6-dihydropurine ribonucleosides, prepared by photoaddition of formate and by low-temperature addition of organolithium reagents to a derivative of purine ribonucleoside, exhibited Ki values of 9-1400 microM against adenosine deaminase, in accord with the active site's considerable tolerance of bulky leaving groups in substrates. Inhibition by one diastereomer of 6-carboxy-1,6-dihydropurine ribonucleoside was found to be time-dependent, progressing from a weakly bound to a more strongly bound complex.  相似文献   

12.
Blasie CA  Berg JM 《Biochemistry》2002,41(50):15068-15073
The thermodynamics of metal binding by the prototypical Cys(2)His(2) zinc finger peptide CP-1 has been examined through the use of isothermal titration calorimetry. In cholamine buffer at pH 7.0, the binding of zinc(II) to CP-1 shows an enthalpy change of DeltaH degrees (obs) = -33.7 +/- 0.8 kcal/mol. Between one and two protons appear to be released accompanying the metal binding process. The heat of protonation of the cholamine buffer used is quite large (-11.5 kcal/mol), indicating that a portion of the observed metal binding enthalpy is due to buffer protonation. Structure-based thermodynamic analysis including the effect of water release from zinc(II) appears to account for the entropy associated with the coupled metal binding-protein folding process semiquantitatively. The strongest driving force for the reaction is the enthalpy associated with the four bonds from zinc(II) to cysteinate and histidine residues, compared with the bonds from zinc(II) to water. The binding of cobalt(II) to CP-1 is less enthalpically driven than the binding of zinc(II) by -7.6 kcal/mol. This value is approximately equal to, but slightly larger than, the expectation based on considerations of ligand field stabilization energy.  相似文献   

13.
14.
The Src homology 3 (SH3) domain of pp60(c-src) (Src) plays dual roles in signal transduction, through stabilizing the repressed form of the Src kinase and through mediating the formation of activated signaling complexes. Transition of the Src SH3 domain between a variety of binding partners during progression through the cell cycle requires adjustment of a delicate free energy balance. Although numerous structural and functional studies of SH3 have provided an in-depth understanding of structural determinants for binding, the origins of binding energy in SH3-ligand interactions are not fully understood. Considering only the protein-ligand interface, the observed favorable change in standard enthalpy (DeltaH=-9.1 kcal/mol) and unfavorable change in standard entropy (TDeltaS=-2.7 kcal/mol) upon binding the proline-rich ligand RLP2 (RALPPLPRY) are inconsistent with the predominantly hydrophobic interaction surface. To investigate possible origins of ligand binding energy, backbone dynamics of free and RLP2-bound SH3 were performed via (15)N NMR relaxation and hydrogen-deuterium (H/(2)H) exchange measurements. On the ps-ns time scale, assuming uncorrelated motions, ligand binding results in a significant reduction in backbone entropy (-1.5(+/-0.6) kcal/mol). Binding also suppresses motions on the micros-ms time scale, which may additionally contribute to an unfavorable change in entropy. A large increase in protection from H/(2)H exchange is observed upon ligand binding, providing evidence for entropy loss due to motions on longer time scales, and supporting the notion that stabilization of pre-existing conformations within a native state ensemble is a fundamental paradigm for ligand binding. Observed changes in motion on all three time scales occur at locations both near and remote from the protein-ligand interface. The propagation of ligand binding interactions across the SH3 domain has potential consequences in target selection through altering both free energy and geometry in intact Src, and suggests that looking beyond the protein-ligand interface is essential in understanding ligand binding energetics.  相似文献   

15.
The Zn finger provides a model for studies of protein structure and stability. Its core contains a conserved phenylalanine residue adjoining three architectural elements: a beta-hairpin, an alpha-helix and a tetrahedral Zn(2+)-binding site. Here, we demonstrate that the consensus Phe is not required for high-affinity Zn(2+) binding but contributes to the specification of a precise DNA-binding surface. Substitution of Phe by leucine in a ZFY peptide permits Zn(2+)-dependent folding. Although a native-like structure is retained, structural fluctuations lead to attenuation of selected nuclear Overhauser enhancements and accelerated amide proton exchange. Surprisingly, wild-type Zn affinity is maintained by entropy-enthalpy compensation (EEC): a hidden entropy penalty (TDeltaDeltaS 7kcal/mol) is balanced by enhanced enthalpy of association (DeltaDeltaH -7kcal/mol) at 25 degrees C. Because the variant is less well ordered than the Phe-anchored domain, the net change in entropy is opposite to the apparent change in configurational entropy. By analogy to the thermodynamics of organometallic complexation, we propose that EEC arises from differences in solvent reorganization. Exclusion of Leu among biological sequences suggests an evolutionary constraint on the dynamics of a Zn finger.  相似文献   

16.
Isothermal titration calorimetry, ITC, has been used to determine the thermodynamics (DeltaG, DeltaH, and -TDeltaS) for binding netropsin to a number of DNA constructs. The DNA constructs included: six different 20-22mer hairpin forming sequences and an 8-mer DNA forming a duplex dimer. All DNA constructs had a single -AT-rich netropsin binding with one of the following sequences, (A(2)T(2))(2), (ATAT)(2), or (AAAA/TTTT). Binding energetics are less dependent on site sequence than on changes in the neighboring single stranded DNA (hairpin loop size and tail length). All of the 1:1 complexes exhibit an enthalpy change that is dependent on the fractional saturation of the binding site. Later binding ligands interact with a significantly more favorable enthalpy change (partial differential DeltaH(1-2) from 2 to 6 kcal/mol) and a significantly less favorable entropy change (partial differential (-TDeltaS(1-2))) from -4 to -9 kcal/mol). The ITC data could only be fit within expected experimental error by use of a thermodynamic model that includes two independent binding processes with a combined stoichiometry of 1 mol of ligand per 1 mol of oligonucleotide. Based on the biophysical evidence reported here, including theoretical calculations for the energetics of "trapping" or structuring of a single water molecule and molecular docking computations, it is proposed that there are two modes by which flexible ligands can bind in the minor groove of duplex DNA. The higher affinity binding mode is for netropsin to lay along the floor of the minor groove in a bent conformation and exclude all water from the groove. The slightly weaker binding mode is for the netropsin molecule to have a slightly more linear conformation and for the required curvature to be the result of a water molecule that bridges between the floor of the minor groove and two of the amidino nitrogens located at one end of the bound netropsin molecule.  相似文献   

17.
Sawas AH  Pentyala SN  Rebecchi MJ 《Biochemistry》2004,43(39):12675-12685
This study directly examines the enthalpic contributions to binding in aqueous solution of closely related anesthetic haloethers (desflurane, isoflurane, enflurane, and sevoflurane), a haloalkane (halothane), and an intravenous anesthetic (propofol) to bovine and human serum albumin (BSA and HSA) using isothermal titration calorimetry. Binding to serum albumin is exothermic, yielding enthalpies (DeltaH(obs)) of -3 to -6 kcal/mol for BSA with a rank order of apparent equilibrium association constants (K(a) values): desflurane > isoflurane approximately enflurane > halothane >or= sevoflurane, with the differences being largely ascribed to entropic contributions. Competition experiments indicate that volatile anesthetics, at low concentrations, share the same sites in albumin previously identified in crystallographic and photo-cross-linking studies. The magnitude of the observed DeltaH increased linearly with increased reaction temperature, reflecting negative changes in heat capacities (DeltaC(p)). These -DeltaC(p) values significantly exceed those calculated for burial of each anesthetic in a hydrophobic pocket. The enhanced stabilities of the albumin/anesthetic complexes and -DeltaC(p) are consistent with favorable solvent rearrangements that promote binding. This idea is supported by substitution of D(2)O for H(2)O that significantly reduces the favorable binding enthalpy observed for desflurane and isoflurane, with an opposing increase of DeltaS(obs). From these results, we infer that solvent restructuring, resulting from release of water weakly bound to anesthetic and anesthetic-binding sites, is a dominant and favorable contributor to the enthalpy and entropy of binding to proteins.  相似文献   

18.
OCP1 and OCP2, the most abundant proteins in the cochlea, are putative subunits of an SCF E3 ubiquitin ligase. Previous work has demonstrated that they form a heterodimeric complex. The thermodynamic details of that interaction are herein examined by isothermal titration calorimetry. At 25 degrees C, addition of OCP1 to OCP2 yields an apparent association constant of 4.0 x 10(7) M(-1). Enthalpically-driven (DeltaH=-35.9 kcal/mol) and entropically unfavorable (-TDeltaS=25.5 kcal/mol), the reaction is evidently unaccompanied by protonation/deprotonation events. DeltaH is strongly dependent on temperature, with DeltaC(p)=-1.31 kcal mol(-1) K(-1). Addition of OCP2 to OCP1 produces a slightly less favorable DeltaH, presumably due to the requirement for dissociation of the OCP2 homodimer prior to OCP1 binding. The thermodynamic signature for OCP1/OCP2 complex formation is inconsistent with a rigid-body association and suggests that the reaction is accompanied by a substantial degree of folding.  相似文献   

19.
Menze MA  Hellmann N  Decker H  Grieshaber MK 《Biochemistry》2000,39(35):10806-10811
Hemocyanin serves as an oxygen carrier in the hemolymph of the European lobster Homarus vulgaris. The oxygen binding behavior of the pigment is modulated by metabolic effectors such as lactate and urate. Urate and caffeine binding to 12-meric hemocyanin (H. vulgaris) was studied using isothermal titration calorimetry (ITC). Binding isotherms were determined for fully oxygenated hemocyanin between pH 7.55 and 8.15. No pH dependence of the binding parameters could be found for either effector. Since the magnitude of the Bohr effect depends on the urate concentration, the absence of any pH dependence of urate and caffeine binding to oxygenated hemocyanin suggests two conformations of the pigment under deoxygenated conditions. Urate binds to two identical binding sites (n = 2) each with a microscopic binding constant K of 8500 M(-1) and an enthalpy change DeltaH degrees of -32.3 kcal mol(-1). Caffeine binds cooperatively to hemocyanin with two microscopic binding constants: K(1) = 14 100 M(-1) and K(2) = 40 400 M(-1). The corresponding enthalpy changes in binding are as follows: DeltaH degrees (1) = -23.3 kcal mol(-1) and DeltaH degrees (2) = -27.1 kcal mol(-1). The comparison of urate and caffeine binding to the oxygenated pigment indicates the existence of two protein conformations for oxygen-saturated hemocyanin. Since effector binding is not influenced by protons, four different conformations are required to create a convincing explanation for caffeine and urate binding curves. This was predicted earlier on the basis of the analysis of oxygen binding to lobster hemocyanin, employing the nesting model.  相似文献   

20.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3888-3892
Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy (T delta S degrees = +10.32 kcal/mol) and no change in enthalpy. Binding to albumin is driven by enthalpy (delta H degrees = -8.34 kcal/mol) and is accompanied by a decrease in entropy (T delta S degrees = -2.88 kcal/mol). Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic (delta H degrees was -3.3 and -5.5 kcal/mol, respectively) and by entropic (T delta S degrees was +4.44 and +2.91 kcal/mol, respectively) components. The implications of these finding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号