首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
CD11b/CD18 is a heterodimeric leukocyte surface receptor which functions in both C3bi-ligand binding and homotypic and heterotypic cell adherence. We have examined the effect of several anti-CD11b/18 mAb on phagocytosis of IgG (EIgG) or complement (EC4b) opsonized erythrocytes by polymorphonuclear leukocytes (PMN) and monocytes. F(ab')2 of two mAb (IB4, an anti-beta-chain mAb and Mo-1 an anti-alpha-chain mAb), inhibited both phagocytosis of EIgG and phorbol ester-stimulated phagocytosis of EC4b by PMN and monocytes. These F(ab')2 inhibited the binding of EIgG to monocytes, but they had no effect on binding of EIgG to PMN, or EC4b to either phagocyte. In addition, IB4 inhibited phorbol-ester stimulated phagocytosis of sheep E opsonized with C component 3bi (EC3bi) without inhibiting rosetting of these same targets. These data separate the anti-phagocytic effect of these mAb from effects on phagocyte-target adherence. When PMN were adherent to an anti-CD11b/CD18 F(ab')2-coated surface, EC3bi binding was abolished, but phagocytosis of EIgG or EC4b was unaffected. Subsequent addition of fluid- phase IB4 or Mo-1 F(ab')2 inhibited phagocytosis of EIgG or EC4b by the adherent cells. This suggested that the CD11b/CD18 involved in C3bi rosetting were mobile in the membrane, whereas those involved in phagocytosis of EIgG or EC4b were not. Cytochalasin treatment of PMN during adherence to F(ab')2-coated plates decreased both apical expression of CD11b/18 and subsequent ingestion of EIgG by 70%, suggesting that microfilaments are important in maintaining immobile CD11b/18 on the apical PMN surface. We conclude that there are functionally distinct populations of CD11b/CD18 on monocytes and PMN: one involved in C3bi rosetting and another involved in the process of phagocytosis mediated via several different receptors. CD11b/18 is not required for optimal target binding in all cases, but is always required for ingestion. As with several other integrins, the CD11b/18 molecules involved in phagocytosis have a functional association with the cell cytoskeleton.  相似文献   

2.
Functional activity of enucleated human polymorphonuclear leukocytes   总被引:33,自引:2,他引:31       下载免费PDF全文
Enucleated human polymorphonuclear leukocytes (PMN) were prepared by centrifuging isolated, intact PMN over a discontinuous Ficoll gradient that contained 20 microM cytochalasin B. The enucleated cells (PMN cytoplasts) contained about one-third of the plasma membrane and about one-half of the cytoplasm present in intact PMN. The PMN cytoplasts contained no nucleus and hardly any granules. The volume of the PMN cytoplasts was about one-fourth of that of the original PMN. Greater than 90% of the PMN cytoplasts had an "outside-out" topography of the plasma membrane. Cytoplasts prepared from resting PMN did not generate superoxide radicals (O2-) or hydrogen peroxide. PMN cytoplasts incubated with opsonized zymosan particles or phorbol-myristate acetate induced a respiratory burst that was qualitatively (O2 consumption, O2- and H2O2 generation) and quantitatively (per unit area of plasma membrane) comparable with that of intact, stimulated PMN. Moreover, at low ratios of bacteria/cells, PMN cytoplasts ingested opsonized Staphylococcus aureus bacteria as well as did intact PMN. At higher ratios, the cytoplasts phagocytosed less well. The killing of these bacteria by PMN cytoplasts was slower than by intact cells. The chemotactic activity of PMN cytoplasts was very low. These results indicate that the PMN apparatus for phagocytosis, generation of bactericidal oxygen compounds, and killing of bacteria, as well as the mechanism for recognizing opsonins and activating PMN functions, are present in the plasma membrane and cytosol of these cells.  相似文献   

3.
Antisperm antibody (ASA)- and complement (C)-mediated immune injury to human sperm is thought to be caused in part by phagocytic neutrophils. To investigate this process, we co-cultured purified human polymorphonuclear leukocytes (PMN) with swim-up sperm in the presence of ASA-positive and ASA-negative sera and assayed for PMN respiratory burst activity, monitored by the release of superoxide anion (O2-) and hydrogen peroxide (H2O2). Phorbol myristate acetate (PMA) and opsonized zymosan were used as positive controls. Phagocytosis of ASA-positive and C-bound sperm by PMN did not enhance O2- production when compared to incubation of sperm with ASA-negative sera. Phagocytosis of ASA-positive and C-bound sperm also resulted in minimal release of H2O2 when compared with ASA-positive and C-negative sperm that were not phagocytosed. In contrast, PMN were maximally stimulated to release O2- in response to either opsonized zymosan or PMA. The kinetics of PMA-induced O2- release was unaffected by the presence of ASA-positive and C-bound sperm. Cytocentrifuge preparations of PMN incubated with ASA-positive and C-bound sperm revealed limited O2- release at the site of PMN/sperm contact. These results indicated that 1) phagocytosis of motile sperm by PMN requires the binding of both ASA and C to the sperm surface; 2) phagocytosis of ASA-positive and C-positive sperm by PMN fails to release reactive oxygen species; and 3) metabolic processes associated with PMN respiratory burst activity may not be coupled to the ingestion of ASA-positive and C-bound sperm.  相似文献   

4.
Histoplasma capsulatum (Hc), is a facultative intracellular fungus that binds to CD11/CD18 receptors on macrophages (Mphi). To identify the ligand(s) on Hc yeasts that is recognized by Mphi, purified human complement receptor type 3 (CR3, CD11b/CD18) was used to probe a Far Western blot of a detergent extract of Hc cell wall and cell membrane. CR3 recognized a single 60-kDa protein, which was identified as heat shock protein 60 (hsp60). Biotinylation of viable yeasts, followed by precipitation with streptavidin-coated beads, and Western blotting with anti-hsp60 demonstrated that hsp60 was on the surface of Hc yeasts. Electron and confocal microscopy revealed that hsp60 resided on the yeast cell wall in discrete clusters. Recombinant hsp60 (rhsp60) inhibited attachment of Hc yeasts to Mphi. Recombinant hsp60 and Abs to CD11b and CD18 inhibited binding of yeasts to Chinese hamster ovary cells transfected with CR3 (CHO3). Polystyrene beads coated with rhsp60 bound to Mphi, and attachment was inhibited by Abs to CD11 and CD18. Freeze/thaw extract (F/TE), a preparation of Hc yeast surface proteins that contained hsp60, inhibited the attachment of Hc yeasts to Mphi. Depletion of hsp60 from F/TE removed the capacity of F/TE to block binding of Hc to Mphi. Interestingly, rhsp60 did not inhibit binding of Hc yeasts to dendritic cells (DC), which recognize Hc via very late Ag 5. Moreover, F/TE inhibited attachment of Hc to DC even when depleted of hsp60. Thus, Hc hsp60 appears to be a major ligand that mediates attachment of Hc to Mphi CD11/CD18, whereas DC recognize Hc via a different ligand(s).  相似文献   

5.
A new method of preparation of bovine polymorphonuclear leukocytes (PMN) is described. The subcellular distribution of cytochrome b in resting and activated bovine PMN was compared to that of the O2-.-generating oxidase (assessed as NADPH cytochrome c reductase inhibited by superoxide dismutase). In resting PMN and in PMN activated by phorbol myristate acetate (PMA), cytochrome b was located into two membrane fractions, one of which was enriched in plasma membrane and cosedimented with alkaline phosphatase, while the other consisted of a denser material cosedimenting with markers of the specific and azurophil granules, i.e. the vitamin-B12-binding protein and myeloperoxidase respectively. During activation of PMN by PMA, 15-20% cytochrome b migrated from dense granules to the plasma membrane. The distribution of the O2-. generating oxidase and cytochrome b in subcellular particles was studied during the course of phagocytosis of PMA-coated latex beads by bovine PMN. At the onset of the respiratory burst, the phagocytic vacuoles arising from internalization of the plasma membrane were enriched in oxidase and alkaline phosphatase, but their specific content of cytochrome b was limited; in contrast, cytochrome b was predominant in denser membrane fractions cosedimenting with myeloperoxidase and the vitamin-B12-binding protein. After a few minutes of phagocytosis, a fraction of light vacuoles, slightly denser than the phagocytic vacuoles, became enriched in O2-.-generating oxidase, cytochrome b, the vitamin-B12-binding protein and myeloperoxidase. These vacuoles probably arose from the fusion of the phagocytic vacuoles with dense granules. In bovine PMN supplemented with glucose and maintained in anaerobiosis, activation by PMA induced slow reduction of cytochrome b (60-70% in 15 min at 37 degrees C). Similar results were obtained with cytoplasts after activation by PMA (30% reduction in 3 min at 37 degrees C). Cytochrome b in a particulate fraction obtained by centrifugation at 100 000 X g of an homogenate of PMA-activated PMN, was slowly reduced upon addition of NADPH under anaerobiosis (less 20% in 20 min at 37 degrees C). No reduction occurred in the 100 000 X g fraction prepared from non-activated PMN. The Soret band of cytochrome b reduced by dithionite was displaced by CO only by 1-2 nm. At subsaturating concentrations, CO had no effect on the rate of O2 uptake by activated bovine PMN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

7.
The adherence of serum-opsonized yeast to neutrophils results in phagocytosis of these particulate stimuli and activation of the respiratory burst. Both events are mediated or modulated in part by the surface receptors for IgG and complement. The link between the binding of complex particulate stimuli to the cell surface, and the triggering of these neutrophil functions, is not completely understood. We have previously described an anti-human neutrophil, murine monoclonal antibody PMN7C3, which specifically inhibits the respiratory burst of neutrophils stimulated with serum-opsonized yeast. In the present study, we show that the antigen recognized by PMN7C3 (PMN7 antigen) is present on a number of neutrophil proteins, including the recently described group of related leukocyte membrane glycoproteins CR3, LFA-1, and p150,95. The PMN-7 antigen differs from other antigens associated with the C3bi receptor complex (MAC 1, MO 1, OKM1, OKM10) in that it is present only on neutrophils among peripheral blood cells. Furthermore, the binding of PMN7C3 to the neutrophil surface inhibits the activation of the respiratory burst by serum opsonized zymosan without affecting phagocytosis of these particulate stimuli. The cross-linking of cell surface PMN7 antigen by multivalent antibody is associated with the capping and internalization of antigen-antibody complexes, and appears to be necessary for the expression of maximum inhibition of opsonized zymosan-triggered respiratory burst activity. PMN7C3 also binds to a group of granule-associated proteins biochemically distinct from CR3, LFA-1, and p150,95. These granule-associated proteins containing PMN7 antigen can be mobilized to the cell surface with secretion. PMN7 antigen-bearing proteins may play a role in modulating the activation of the respiratory burst associated with phagocytosis of serum-opsonize zymosan.  相似文献   

8.
Patients whose cells are deficient in the glycoproteins LFA-1, Mol, and p150,95 have recurrent infections and pronounced abnormalities in neutrophil adherence, aggregation, chemotaxis, and phagocytosis. We characterized activation and regulation of oxidative metabolism of Mol-deficient neutrophils. These cells failed to depolarize or to produce O2- or H2O2 normally when stimulated by opsonized zymosan. The chemotactic peptide formyl methionyl-leucyl-phenylalanine depolarized Mol-deficient neutrophils normally but caused supernormal production of O2- and H2O2, a result of a prolonged burst in oxidative metabolism. Phorbol myristate acetate depolarized Mol-deficient neutrophils at a nearly normal rate but evoked release of significantly less O2- and H2O2 than from normal PMN. The aberrant activation and regulation of the oxidative burst in Mol-deficient neutrophils are considered in light of recently emerging concepts in the cell biology of this process, and the possibility that these abnormalities reflect a defect in the cytoskeleton-membrane interaction is discussed.  相似文献   

9.
The relevance of specific Abs for the induction of cellular effector functions against Bordetella pertussis was studied. IgG-opsonized B. pertussis was efficiently phagocytosed by human polymorphonuclear leukocytes (PMN). This process was mediated by the PMN IgG receptors, FcgammaRIIa (CD32) and FcgammaRIIIb (CD16), working synergistically. Furthermore, these FcgammaR triggered efficient PMN respiratory burst activity and mediated transfer of B. pertussis to lysosomal compartments, ultimately resulting in reduced bacterial viability. Bacteria opsonized with IgA triggered similar PMN activation via FcalphaR (CD89). Simultaneous engagement of FcalphaRI and FcgammaR by B. pertussis resulted in increased phagocytosis rates, compared with responses induced by either isotype alone. These data provide new insights into host immune mechanisms against B. pertussis and document a crucial role for Ig-FcR interactions in immunity to this human pathogen.  相似文献   

10.
Abstract We examined the serum requirements for surface phagocytosis of Staphylococcus epidermidis and Eschericia coli and for the subsequent chemiluminescent response of human neutrophils. Substantial surface phagocytosis of S. epidermidis occured in the absence of opsonins, although the presence of 10% pooled or heat-inactivated serum significantly increased phagocytosis. There was no significant difference between these opsonins, indicating that surface phagocytosis of S. epidermidis did not require complement, Unopsonized E. coli were not as readily phagocytized as S. epidermidis (33% versus 57%). In contrast to S. epidermidis optimal phagocytosis of E. coli required complement as 10% heat inactivated donor serum (HHS) was significantly less effective as an opsonin than 10% pooled healthy donor serum (PHS). The time kinetics for phagocytosis of each organism were similar, with most of the phagocytosis iluminescent response of neutrophils produced discrepant results. Maximal chemiluminescence was observed when neutrophils were stimulated with bacteria opsonized in PHS. The response to HHS-opsonized bacteria was less, and chemiluminescence to unopsonized bacteria was only marginally higher than the control, even though there was relatively good phagocytosis. These results define the opsonic requirements for surface phagocytosis of S. epidermidis and E. coli and indicate that although complement may not be required for phagocytosis, it is necessary for generation of a maximal oxidative burst, and thus may be essential for efficient intracellular killing.  相似文献   

11.
We examined the serum requirements for surface phagocytosis of Staphylococcus epidermidis and Escherichia coli and for the subsequent chemiluminescent response of human neutrophils. Substantial surface phagocytosis of S. epidermidis occurred in the absence of opsonins, although the presence of 10% pooled or heat-inactivated serum significantly increased phagocytosis. There was no significant difference between these opsonins, indicating that surface phagocytosis of S. epidermidis did not require complement. Unopsonized E. coli were not as readily phagocytized as S. epidermidis (33% versus 57%). In contrast to S. epidermidis optimal phagocytosis of E. coli required complement as 10% heat inactivated donor serum (HHS) was significantly less effective as an opsonin than 10% pooled healthy donor serum (PHS). The time kinetics for phagocytosis of each organism were similar, with most of the phagocytosis occurring in the first 10 min. The chemiluminescent response of neutrophils produced discrepant results. Maximal chemiluminescence was observed when neutrophils were stimulated with bacteria opsonized in PHS. The response to HHS-opsonized bacteria was less, and chemiluminescence to unopsonized bacteria was only marginally higher than the control, even though there was relatively good phagocytosis. These results define the opsonic requirements for surface phagocytosis of S. epidermidis and E. coli and indicate that although complement may not be required for phagocytosis, it is necessary for generation of a maximal oxidative burst, and thus may be essential for efficient intracellular killing.  相似文献   

12.
The role of complement receptors on monocyte derived human macrophages in phagocytosis of infective (MP) and noninfective (LP) developmental stages of Leishmania major promastigotes was studied. We compared binding of these specific developmental stages to MO after preincubation in fresh or heat-inactivated serum. Although LP do not require fresh serum for attachment, MP were dependent on serum C opsonization for entry. Inhibition of CR1 substantially abolished binding of the infective MP. In contrast, inhibition of iC3bR (CR3 and p150,95) had no effect on MP binding. Inhibition of both iC3bR, however, did block binding of nonopsonized LP. Attachment of LP to CR3 was blocked by fluid phase addition of mAb OKM1 and M1/70, which inhibit complement-independent binding to CR3, but not by mAb OKM10 which inhibits iC3b binding to this receptor. After fresh serum pretreatment of LP, however, only simultaneous inhibition of CR3 and CR1 effectively blocked their attachment. Addition of mannan did not inhibit attachment of either promastigote stage. Both opsonized and nonopsonized LP trigger a respiratory burst in MO, possibly via the C independent site in CR3, whereas the CR1-mediated uptake of MP does not generate a respiratory burst. The use of this receptor by MP may facilitate their subsequent intracellular survival.  相似文献   

13.
We examined the relationship between neutrophil [polymorphonuclear leukocyte (PMN)] influx and lung vascular injury in response to Escherichia coli pneumonia. We assessed lung tissue PMN uptake by measuring myeloperoxidase and transvascular PMN migration by determining PMN counts in lung interstitium and bronchoalveolar lavage fluid (BALF) in mice challenged intratracheally with E. coli. Lung vascular injury was quantified by determining microvessel filtration coefficient (Kf,c), a measure of vascular permeability. We addressed the role of CD18 integrin in the mechanism of PMN migration and lung vascular injury by inducing the expression of neutrophil inhibitory factor, a CD11/CD18 antagonist. In control animals, we observed a time-dependent sixfold increase in PMN uptake, a fivefold increase in airway PMN migration, and a 20-fold increase in interstitial PMN uptake at 6 h after challenge. Interestingly, Kf,c increased minimally during this period of PMN extravasation. CD11/CD18 blockade reduced lung tissue PMN uptake consistent with the role of CD18 in mediating PMN adhesion to the endothelium but failed to alter PMN migration in the tissue. Moreover, CD11/CD18 blockade did not affect Kf,c. Analysis of BALF leukocytes demonstrated diminished oxidative burst compared with leukocytes from bacteremic mice, suggesting a basis for lack of vascular injury. The massive CD11/CD18-independent airway PMN influx occurring in the absence of lung vascular injury is indicative of an efficient host-defense response elicited by E. coli pneumonia.  相似文献   

14.
Cystatin C, a cysteine protease inhibitor, has recently been suggested to be a potent regulator in inflammatory processes. Human cystatin C was isolated from the urine of one patient suffering from tubular disorders and was tested for its effects on two functions of human polymorphonuclear neutrophils (PMN): O2- release and phagocytosis. Slow-form or (des 1-4) cystatin C and fast-form or (des 1-8) cystatin C differed by the presence in (des 1-4) cystatin C only of the N-terminal tetrapeptide Lys-Pro-Pro-Arg. Whereas (des 1-8) cystatin C did not seem to interfere with PMN functions at physiological concentrations, (des 1-4) cystatin C induced an inhibition of PMN phagocytosis-associated respiratory burst in response to opsonized zymosan particles. The inhibition may be attributed to the tetrapeptide Lys-Pro-Pro-Arg which has been synthesized and shown to have the same inhibitor effects, at concentrations similar to those required for (des 1-4) cystatin C. These results support a potential role for cystatin C as a modulator during inflammation.  相似文献   

15.
Treatment of Raji or Daudi cells with human serum under conditions which allow the alternative pathway of C activation results in their C3-opsonization and enhanced sensitivity to NK-mediated lysis. The effector lymphocytes have low buoyant density, carry CD16 and HNK1 markers as well as the CD11a-c/CD18 leukocytic cell adhesion molecules. One of these molecules, made up of CD11b-CD18 (alpha- and beta-chains), is also the receptor for iC3b. We studied the role of the cell adhesion molecules in the NK effect on targets with and without C3-fragments. We focused on the E/T interaction of opsonized cells in the presence of anti CD18 mAb. mAb directed to the CD11a molecule caused 0 to 30% inhibition of the lysis of both non-opsonized and opsonized cells whereas the mAb antibody directed to the CD11c molecule had no effect. Reagents reactive with the iC3b binding site of CD11b (alpha-chain of the CR3) molecule did not alter the lysis of non-opsonized targets whereas they abrogated the C3-mediated increment of the Nk effect on opsonized cells. Two mAb preparations, 60.3 and IB4, directed to the CD18 chain shared by the three cell adhesion molecules abrogated in a dose-dependent way the lysis of both non-opsonized and opsonized targets. The 60.3 mAb inhibited the iC3b binding site of CR3 (despite its localization on the alpha-chain) and in accordance it inhibited the binding of lymphocytes to the opsonized target also. The IB4 did not affect this site and in accordance it inhibited only partially the binding of effectors to the C3 fragment carrying Raji, nevertheless it inhibited their lysis. This result indicates that the iC3b-CR3 bridge is insufficient for triggering the lysis in absence of the contact through the adhesion molecules.  相似文献   

16.
Chloride ion efflux is an early event occurring after exposure of human neutrophils to several soluble agonists. Under these circumstances, a rapid and reversible fall in the high basal intracellular chloride (Cl-i) levels is observed. This event is thought to play a crucial role in the modulation of several critical neutrophil responses including activation and up-regulation of adhesion molecules, cell attachment and spreading, cytoplasmic alkalinization, and activation of the respiratory burst. At present, however, no data are available on chloride ion movements during neutrophil phagocytosis. In this study, we provide evidence that phagocytosis of Candida albicans opsonized with either whole serum, complement-derived opsonins, or purified human IgG elicits an early and long-lasting Cl- efflux accompanied by a marked, irreversible loss of Cl-i. Simultaneous assessment of Cl- efflux and phagocytosis in cytochalasin D-treated neutrophils indicated that Cl- efflux occurs without particle ingestion. These results suggest that engagement of immune receptors is sufficient to promote chloride ion movements. Several structurally unrelated chloride channel blockers inhibited phagocytosis-induced Cl- efflux as well as the release of azurophilic-but not specific-granules. It implicates that different neutrophil secretory compartments display distinct sensitivity to Cl-i modifications. Intriguingly, inhibitors of Cl- exchange inhibited cytosolic Ca2+ elevation, whereas Cl- efflux was not impaired in Ca2+-depleted neutrophils. We also show that FcgammaR(s)- and CR3/CR1-mediated Cl- efflux appears to be dependent on protein tyrosine phosphorylation but independent of PI3K and phospholipase C activation.  相似文献   

17.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

18.
19.
Neutrophils and macrophages were generated in vitro from mice that display either high or low tissue susceptibilities to Candida albicans infection and their ability to phagocytose and kill three isolates of the yeast with different virulence characteristics was evaluated. In the absence of opsonization, phagocytosis by BALB/c and CBA/CaH neutrophils was comparable, but the killing was very poor. Opsonization with normal serum slightly decreased phagocytosis, but it had markedly different effects on killing, either enhancing or inhibiting candidacidal activity, depending on the combination of yeast isolate and mouse strain. In contrast, BALB/c macrophages showed high levels of phagocytosis and killing of both unopsonized yeasts and opsonized yeasts; whereas killing of unopsonized yeasts by CBA/CaH macrophages was poor, it was markedly enhanced by opsonization.  相似文献   

20.
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of world-wide importance. As the induction of cell-mediated immunity to Hc is of critical importance in host defense, we sought to determine whether dendritic cells (DC) could function as a primary APC for this pathogenic fungus. DC obtained by culture of human monocytes in the presence of GM-CSF and IL-4 phagocytosed Hc yeasts in a time-dependent manner. Upon ingestion, the intracellular growth of yeasts within DC was completely inhibited compared with rapid growth within human macrophages. Electron microscopy of DC with ingested Hc revealed that many of the yeasts were degraded as early as 2 h postingestion. In contrast to macrophages, human DC recognized Hc yeasts via the fibronectin receptor, very late Ag-5, and not via CD18 receptors. DC stimulated Hc-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of viable and heat-killed Hc yeasts, but greater proliferation was achieved after ingestion of viable yeasts. These data demonstrate that human DC can phagocytose and degrade a fungal pathogen and subsequently process the appropriate Ags for stimulation of lymphocyte proliferation. In vivo, such interactions between DC and Hc may facilitate the induction of cell-mediated immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号