首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在全球性能源紧缺和我国能源植物大规模种植困难等大背景下,优质、充足的原料供应已成为制约生物质能源产业发展的主要限制因素。在确保能源植物高效生产和克服"与粮争地、与人争粮"现实的同时,挖掘我国边际土壤高产高效生产能源植物的土地优势和增产潜力。通过筛选评价适宜西北干旱地区高抗逆的新型能源植物种类,开发应用能源植物与粮经作物间套作栽培技术,实现新型能源植物对逆境资源的高效利用和可持续规模化种植,提高能源植物的生产力和优化能源物种的区域配置,增加土地产值和农民收入,缓解能源紧缺,达到经济、生态和社会效益多赢,为我国能源和粮食安全提供技术支撑。  相似文献   

2.
China's bioenergy potential   总被引:2,自引:0,他引:2  
Despite great enthusiasm about developing renewable energy in China, the country's bioenergy potential remains unclear. Traditional utilization of bioenergy through primarily household combustion of crop residue and fuelwood is still a predominant energy source for rural China. More efficient utilization of ~300 million tons of crop residues for bioelectricity generation could add a couple of percent of renewable energy to China's total energy production. With <9% of the world's arable land supporting ~20% of the world's population, China is already a net grain importer and has little extra farmland for producing a significantly additional amount of biofuels from first‐generation energy crops, such as maize, sugarcane, and soybean. Second‐generation energy crops hold the greatest potential for bioenergy development worldwide. Miscanthus, a native perennial C4 grass that produces high biomass across almost the entire climatic zone of China, is the most promising second‐generation energy crop to domesticate and cultivate. A reasonable near‐term goal is to produce 1 billion tons of Miscanthus biomass annually from ~100 million hectares of marginal and degraded land concentrated in northern and northwestern China. This can generate ~1458 TW h electricity and mitigate ~1.7 billion tons of CO2 emission from power coal, which account for ~45% of China's electricity output and ~28% of CO2 emission in 2007. Furthermore, growing perennial grasses on marginal and degraded land will contribute to the ongoing efforts in China to restore vast areas of land under serious threat of desertification. With this potential taken into account, bioenergy can play a major role in meeting China's rapidly growing energy demand while substantially reducing greenhouse gas emission.  相似文献   

3.
The Paris agreement on climate change requires rapid reductions in greenhouse gas emissions. One important mitigation strategy, at least in the intermediate future, is the substitution of fossil fuels with bioenergy. However, using agriculture- and forest-derived biomass for energy has sparked controversy regarding both the climate mitigation potential and conflicts with biodiversity conservation. The urgency of the climate crisis calls for using forests for carbon sequestration and storage rather than for bioenergy, making agricultural biomass an attractive alternative for fossil energy substitution. However, this calls for comprehensive assessments of its sustainability in terms of consequences for biodiversity and ecosystem services. In this review, we provide a first holistic overview of the impacts on ecosystems of land-use changes from bioenergy crop production in temperate climates, by synthesizing results on both biodiversity and ecosystem service impacts. We found that bioenergy-related land-use changes can have both positive and negative effects on ecosystems, with original land use, bioenergy crop type and scale of bioenergy production being important moderators of impacts. Despite the risk of opportunity cost for food production, perennial crop cultivation on arable land had the lowest occurrence of negative impacts on biodiversity and ecosystem services. Growing biomass for bioenergy on surplus land has been suggested as a way to alleviate competition with food production and biodiversity conservation, but our results demonstrate that utilizing marginal or abandoned land for bioenergy crop production cannot fully resolve these trade-offs. Furthermore, there is a lack of empirical studies of the biodiversity value of marginal and abandoned land, limiting our understanding of the sustainability implications of biomass cultivation on surplus land. We argue that future research and policies for bioenergy production must explicitly consider biodiversity and ecosystem services in combination to avoid potential trade-offs between the two and to ensure sustainable bioenergy production.  相似文献   

4.
The need for climate change mitigation and to meet increasing energy demands has led to a rise in the land area under bioenergy crops in many countries. There are concerns that such large-scale land conversion will conflict with food production and impact on the environment. Perennial biomass crops could be grown on more marginal agricultural land. However, for sustainable solutions, biomass yields will need to be sufficient and the wider implications of land-use changes considered. Here, focusing on Miscanthus in England as an example, we combined an empirical model with GIS to produce a yield map and estimated regional energy generation potentials after masking out areas covered by environmental and socio-economic factors which could preclude the planting of energy crops. Agricultural land quality and the distributions of currently grown food crops were then taken into account. Results showed that: (i) regional contrasts occur in the importance of different factors affecting biomass planting; (ii) areas with the highest biomass yields co-locate with food producing areas on high grade land, and; (iii) when such high grade land and unsuitable areas are excluded, a policy-related scenario for increased planting on 350,000 ha utilised 4–28% (depending on the region) of lower grade land and would not necessarily greatly impact on UK food security. We conclude that the GIS-based yield and suitability mapping described here can help identify important issues in bioenergy generation potentials and land use implications at regional or finer spatial scales that would be missed in analyses at the national level.  相似文献   

5.
ABSTRACT: This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor.  相似文献   

6.
Energy consumption and CO2 emissions have been increasing continuously over the past few decades in China and there is a pressing need to replace the fossil fuel‐based economy with an efficient low‐carbon system, tailor‐made to future requirements. China is starting an energy transition with the aim of building an energy system for the future. China has made tremendous progress in increasing the amount of renewable energy and reducing the cost of renewable energy over the last 20 years. According to the 14th 5 year plan, China aims to incorporate 20% of renewable energy to the primary energy mix and attain 27% reduction in CO2 emissions. Bioenergy crops constitute a significant proportion of biomass‐based bioenergy and have recently been promoted by the Chinese Government to help overcome food and fuel conflict. Steps are being taken to promote bioenergy crops on marginal lands in China, and various regions across the country with soil marginality have been evaluated for bioenergy crop cultivation. The present paper reviews the status of bioenergy in China and the potential status of marginal lands from different regions of China. It also elaborates on some of the policies, subsidies and incentives allocated by the Chinese Government for the promotion of biomass‐based energy. Land management and plant improvement strategies were discussed, which are effective in making marginal lands suitable for bioenergy crop cultivation. Managing planting strategies, intercropping and crop rotation are effective management practices used in China for the utilization of marginal lands. A national investigation is desirable for creating an inventory of technical and economic potential of biomass feedstocks that could be planted on marginal lands. This would assist with highlighting the pros and cons of using marginal lands for bioenergy production and effective policy making.  相似文献   

7.
发展可再生生物质能源是解决人类能源危机和环境污染的重要途径。利用边际土地发展油脂类生物质能是生物质能的重要组成部分。蓖麻因为适应性强和油脂成份独特被誉为"理想的生物柴油植物"。蓖麻是我国优势油脂类能源植物,利用边际土地,发展蓖麻产业为我国生物柴油产业化提供原料,是我国现阶段生物柴油产业化发展的相对理想而又现实的选择,而且具有重要的发展前景和巨大的发掘潜力。立足我国现阶段生物柴油产业化的瓶颈问题,着重阐述了蓖麻种质资源发掘的现状、优良品种培育的途径和发展前景,以及利用蓖麻种子油生产商业化生物柴油的现状,以期推动我国利用边际土地发展蓖麻产业以及生物柴油商业化生产。  相似文献   

8.
There has been rapid economic development in China in recent decades, and demand for energy has consequently been increasing rapidly. Development and utilisation of clean and renewable energy has been promoted by the Chinese government to help sustain long-term and stable development. Sugarcane is being increasingly used in several countries as feedstock for renewable energy products, and is a major and expanding crop in southern China. In this paper, we discuss the potential of sugarcane as a feedstock for bioenergy production in China. It includes a review of (1) the existing sugarcane industry in China and key bio-physical factors affecting the extent to which sugarcane-based industries could supply feedstock for renewable energy production in China, (2) the economic and policy factors which are likely to affect production of bioenergy from sugarcane in China, and (3) recommendations on actions and policies that may assist with appropriate development of bioenergy production from sugarcane in China. Existing and expected future economic conditions are unlikely to favour production of biofuel from the sugar component in cane. However, the fibre component of cane remains an under-utilised resource component. A conclusion is made that sugarcane fibre has potential to contribute towards renewable electricity production in China. However, at present, favourable incentives do not exist to encourage this production. It is suggested that policies to facilitate cost-effective production of renewable electricity by sugar mills, consistent with national objectives regarding production of renewable energy, be considered by governments. Priorities for future research are in improving biomass yields per unit area of land and technologies for low-cost conversion of lignocellulosic biomass into biofuel.  相似文献   

9.
寡糖类能源植物菊芋及其综合利用研究进展   总被引:2,自引:0,他引:2  
菊芋作为我国最具发展前景的非粮寡糖类能源植物之一,具有宜于边际地生长、生物质产量高、抗逆性强、易转化等优点。综合国内外菊芋研究现状,以菊芋生物质原料生产为核心,从能源植物分类、菊芋生长特性、种质资源、遗传改良、丰产栽培、采后贮藏、生物燃料研发等方面对其研究现状进行了详细阐述,并展望了菊芋在生物质原料生产方面的未来研究趋势和重点,为我国寡糖类能源植物的长远发展和科学研究提供参考。  相似文献   

10.
Under the current accounting systems, emissions produced when biomass is burnt for energy are accounted as zero, resulting in what is referred to as the ‘carbon neutrality’ assumption. However, if current harvest levels are increased to produce more bioenergy, carbon that would have been stored in the biosphere might be instead released in the atmosphere. This study utilizes a comparative approach that considers emissions under alternative energy supply options. This approach shows that the emission benefits of bioenergy compared to use of fossil fuel are time‐dependent. It emerges that the assumption that bioenergy always results in zero greenhouse gas (GHG) emissions compared to use of fossil fuels can be misleading, particularly in the context of short‐to‐medium term goals. While it is clear that all sources of woody bioenergy from sustainably managed forests will produce emission reductions in the long term, different woody biomass sources have various impacts in the short‐medium term. The study shows that the use of forest residues that are easily decomposable can produce GHG benefits compared to use of fossil fuels from the beginning of their use and that biomass from dedicated plantations established on marginal land can be carbon neutral from the beginning of its use. However, the risk of short‐to‐medium term negative impacts is high when additional fellings are extracted to produce bioenergy and the proportion of felled biomass used for bioenergy is low, or when land with high C stocks is converted to low productivity bioenergy plantations. The method used in the study provides an instrument to identify the time‐dependent pattern of emission reductions for alternative bioenergy sources. In this way, decision makers can evaluate which bioenergy options are most beneficial for meeting short‐term GHG emission reduction goals and which ones are more appropriate for medium to longer term objectives.  相似文献   

11.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   

12.
微藻能源技术开发和产业化的发展思路与策略   总被引:6,自引:2,他引:6  
随着石油资源的日益减少及实现低碳经济的迫切需要,微藻能源已成为世界各国重点研究与发展的战略方向。微藻能源关系国家能源重大战略储备,因此我国迫切需要自主开发微藻能源产业化技术。文中分析了我国发展微藻能源的优势,及目前微藻能源产业化中存在的瓶颈和亟待解决的问题,既包括基础科学研究内容,也包括产业化进程中亟需攻克的关键技术问题。在此基础上,提出微藻能源的发展思路和策略,指出了其产业化中的主要环节的技术发展方向,展望了产业化进程。  相似文献   

13.
Renewable energy policies in the electricity and transportation sectors in the United States are expected to create demand for biomass and food crops (corn) that could divert land from food crop production. We develop a dynamic, open‐economy, price‐endogenous multi‐market model of the US agricultural, electricity and transportation sectors to endogenously determine the quantity and mix of bioenergy likely to be required to meet the state Renewable Portfolio Standards (RPSs) and the federal Renewable Fuel Standard (RFS) if implemented independently or jointly (RFS & RPS) over the 2007–2030 period and their implications for the extent and spatial pattern of diversion of land from other uses for biomass feedstock production. We find that the demand for biomass ranges from 100 million metric tons (MMT) under the RPS alone to 310 MMT under the RFS & RPS; 70% of the biomass in the latter case can be met by crop and forest residues, while the rest can be met by devoting 3% of cropland to energy crop production with 80% of this being marginal land. Our findings show significant potential to meet current renewable energy goals by expanding high‐yielding energy crop production on marginal land and using residues without conflicting with food crop production.  相似文献   

14.
In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation.  相似文献   

15.
Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose‐grown woody crops grown on marginal lands. Results reveal trade‐offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business‐as‐usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose‐grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose‐grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land‐use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for biodiversity, and point to the challenges associated with evaluating bioenergy sustainability.  相似文献   

16.

Introduction

In the last years, the use of biomass for energy purposes has been seen as a promising option to reduce the use of nonrenewable energy sources and the emissions of fossil carbon. However, LCA studies have shown that the energetic use of biomass also causes impacts on climate change and, furthermore, that different environmental issues arise, such as land use and agricultural emissions. While biomass is renewable, it is not an unlimited resource. Its use, to whatever purpose, must therefore be well studied to promote the most efficient option with the least environmental impacts. The 47th LCA Discussion Forum gathered several national and international speakers who provided a broad and qualified view on the topic.

Summary of the topics presented in DF 47

Several aspects of energetic biomass use from a range of projects financed by the Swiss Federal Office of Energy (SFOE) were presented in this Discussion Forum. The first session focused on important aspects of the agricultural biogas production like the use of high energy crops or catch crops as well as the influence of plant size on the environmental performance of biogas. In the second session, other possibilities of biomass treatment like direct combustion, composting, and incineration with municipal waste were presented. Topic of the first afternoon session was the update and harmonization of biomass inventories and the resulting new assessment of biofuels. The short presentations investigated some further aspects of the LCA of bioenergy like the assessment of spatial variation of greenhouse gas (GHG) emissions from bioenergy production in a country, the importance of indirect land use change emissions on the overall results, the assessment of alternative technologies to direct spreading of digestate or the updates of the car operation datasets in ecoinvent.

Conclusions

One main outcome of this Discussion Forum is that bioenergy is not environmentally friendly per se. In many cases, energetic use of biomass allows a reduction of GHG and fossil energy use. However, there is often a tradeoff with other environmental impacts linked to agricultural production like eutrophication or ecotoxicity. Methodological challenges still exist, like the assessment of direct and indirect land use change emissions and their attribution to the bioenergy production, or the influence of heavy metal flows on the bioenergy assessment. Another challenge is the implementation of a life cycle approach in certification or legislation schemes, as shown by the example of the Renewable Energy Directive of the European Union.  相似文献   

17.
Water and energy demands associated with bioenergy crop production on marginal lands are inextricably linked with land quality and land use history. To illustrate the effect of land marginality on bioenergy crop yield and associated water and energy footprints, we analyzed seven large‐scale sites (9–21 ha) converted from either Conservation Reserve Program (CRP) or conventional agricultural land use to no‐till soybean for biofuel production. Unmanaged CRP grassland at the same location was used as a reference site. Sites were rated using a land marginality index (LMI) based on land capability classes, slope, soil erodibility, soil hydraulic conductivity, and soil tolerance factors extracted from a soil survey (SSURGO) database. Principal components analysis was used to develop a soil quality index (SQI) for the study sites based on 12 soil physical and chemical properties. The water and energy footprints on these sites were estimated using eddy‐covariance flux techniques. Aboveground net primary productivity was inversely related to LMI and positively related to SQI. Water and energy footprints increased with LMI and decreased with SQI. The water footprints for grain, biomass and energy production were higher on lands converted from agricultural land use compared with those converted from the CRP land. The sites which were previously in the CRP had higher SQI than those under agricultural land use, showing that land management affects water footprints through soil quality effects. The analysis of biophysical characteristics of the sites in relation to water and energy use suggests that crops and management systems similar to CRP grasslands may provide a potential strategy to grow biofuels that would minimize environmental degradation while improving the productivity of marginal lands.  相似文献   

18.
Giant reed (Arundo donax L.) is a perennial rhizomatous grass that shows promise as a bioenergy crop in the Mediterranean environment. The species has spread throughout the world, catalyzed by human activity, though also as a result of its intrinsic robustness, adaptability, and versatility. Giant reed is able to thrive across a wide range of soil types and is tolerant to drought, salinity, and flooding. This tolerance to environmental stresses is significant and could mean that growing energy crops on marginal land is one possible strategy for reducing competition for land with food production and for improving soil quality. We devised an experiment in which we cultivated giant reed in a sandy loam soil with low nutrient availability. Our goal was to evaluate the dynamics of aboveground and belowground biomass and assess the nutrient dynamics of this grass species, focusing particularly on nutrient accumulation and remobilization. The species demonstrated good productivity potential: In the third year, aboveground dry biomass yield reached around 20 t?ha?1, with a corresponding rhizome dry biomass yield of 16 t?ha?1. Results for this species were characterized by low nutrient contents in the aboveground biomass at the end of the growing season, and its rhizome proved able to support growth over the spring period and to store nutrients in the autumn. Nevertheless, the adaptability of giant reed to marginal land and the role of its belowground biomass should be investigated over the long-term, and any further research should focus on its potential to reduce greenhouse gas emissions and maintain soil fertility.  相似文献   

19.
Sweetcane (Erianthus arundinaceus [Retzius] Jeswiet) is an ecologically dominant warm‐season perennial grass native to southern China. It traditionally plays an important role in sugarcane breeding due to its excellent biological traits and genetic relatedness to sugarcane. Recent studies have shown that sweetcane has a great potential in bioenergy and environmental remediation. The objective of this paper is to review the current research on sweetcane biology, phenology, biogeography, agronomy, and conversion technology, in order to explore its development as a bioenergy crop with environmental remediation potential. Sweetcane is resistant to a variety of stressors and can adapt to different growth environments. It can be used for ecological restoration, soil and water conservation, contaminated land repairing, nonpoint source pollutants barriers in buffer strips along surface waters, and as an ornamental and remediation plant on roadsides and in wetlands. Sweetcane exhibits higher biomass yield, calorific value and cellulose content than other bioenergy crops under the same growth conditions, thereby indicating its superior potential in second‐generation biofuel production. However, research on sweetcane as a bioenergy plant is still in its infancy. More works need be conducted on breeding, cultivation, genetic transformation, and energy conversion technologies.  相似文献   

20.
Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes, where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号