首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD44 is a transmembrane adhesion molecule and hemopoietic CD44 has an essential role in hyaluronan clearance and resolution of noninfectious lung injury. In this study, we examined the role of CD44 in acute pulmonary inflammation and in the regulation of LPS-TLR signaling. Following intratracheally LPS treatment, CD44(-/-) mice demonstrated an exaggerated inflammatory response characterized by increased inflammatory cell recruitment, elevated chemokine expression in bronchoalveolar lavage fluid, and a marked increase in NF-kappaB DNA-binding activity in lung tissue in vivo and in macrophages in vitro. Furthermore, CD44(-/-) mice were more susceptible to LPS-induced shock. Reconstitution of hemopoietic CD44 reversed the inflammatory phenotype. We further found that the induction of the negative regulators of TLR signaling IL-1R-associated kinase-M, Toll-interacting protein, and A20 by intratracheal LPS in vivo and in macrophages in vitro was significantly reduced in CD44(-/-) mice. Collectively, these data suggest CD44 plays a previously unrecognized role in preventing exaggerated inflammatory responses to LPS by promoting the expression of negative regulators of TLR-4 signaling.  相似文献   

2.
Dendritic cells (DCs) are recognized as major players in the regulation of immune responses to a variety of Ags, including bacterial agents. LPS, a Gram-negative bacterial cell wall component, has been shown to fully activate DCs both in vitro and in vivo. LPS-induced DC maturation involves activation of p38, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases, and NF-kappaB. Blocking p38 inhibits LPS-induced maturation of DCs. In this study we investigated the role of LPS in the in vitro generation of immature DCs. We report here that in contrast to the observed beneficial effects on DCs, the presence of LPS in monocyte culture retarded the generation of immature DCs. LPS not only impaired the morphology and reduced the yields of the cultured cells, but also inhibited the up-regulation of surface expression of CD1a, costimulatory and adhesion molecules. Furthermore, LPS up-regulated the secretion of IL-1beta, IL-6, IL-8, IL-10, and TNF-alpha; reduced Ag presentation capacity; and inhibited phosphorylation of ERK, but activated p38, leading to a reduced NF-kappaB activity in treated cells. Neutralizing Ab against IL-10, but not other cytokines, partially blocked the effects of LPS. Inhibiting p38 (by inhibitor SB203580) restored the morphology, phenotype, and Ag presentation capacity of LPS-treated cells. SB203580 also inhibited LPS-induced production of IL-1beta, IL-10, and TNF-alpha; enhanced IL-12 production; and recovered the activity of ERK and NF-kappaB. Thus, our study reveals that LPS has dual effects on DCs that are biologically important: activating existing DCs to initiate an immune response, and inhibiting the generation of new DCs to limit such a response.  相似文献   

3.
Lin WN  Luo SF  Lee CW  Wang CC  Wang JS  Yang CM 《Cellular signalling》2007,19(6):1258-1267
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.  相似文献   

4.
During Gram-negative sepsis and endotoxemia, CD14 is essential for the recognition of LPS by the TLR4 complex and subsequent generation of systemic inflammation. However, CD14-independent responses to LPS have been reported in vitro and in vivo in selected tissues including the skin. As the liver is a key target organ for neutrophil sequestration and inflammatory pathology during sepsis and endotoxemia, we investigated the role of CD14 in the recruitment of neutrophils into the liver in a mouse model of endotoxemia. Using dynamic in vivo imaging of the liver, we observed that neutrophil recruitment within the sinusoids and post-sinusoidal venules occurred equivalently between LPS-treated wild-type and CD14-knockout mice. Neutrophil recruitment within the liver was completely independent of CD14 regardless of whether it was expressed on cells of hematopoietic or nonhematopoietic origin or in serum as soluble CD14. Whereas CD14 expression was essential for activation of circulating neutrophils and for the development of LPS-induced systemic inflammation (pulmonary neutrophil sequestration, leukopenia, and increased serum proinflammatory cytokine levels), deficiency of CD14 did not limit the adhesion strength of neutrophils in vitro. Furthermore, wild-type and CD14-knockout mice displayed identical deposition of serum-derived hyaluronan-associated protein within liver sinusoids in response to LPS, indicating that the sinusoid-specific CD44/hyaluronan/serum-derived hyaluronan-associated protein-dependent pathway of neutrophil adhesion is activated independently of CD14. Therefore, the liver microcirculation possesses a unique CD14-independent mechanism of LPS detection and activation of neutrophil recruitment.  相似文献   

5.
The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [(123)I]-(R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals (p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [(11)C]-(R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.  相似文献   

6.
7.
8.
9.
10.
Fibroblasts are important effector cells having a potential role in augmenting the inflammatory responses in various diseases. In infantile diarrhea caused by enteropathogenic Escherichia coli (EPEC), the mechanism of inflammatory reactions at the mucosal site remains unknown. Although the potential involvement of fibroblasts in the pathogenesis of cryptococcus-induced diarrhea in pigs has been suggested, the precise role of lamina propria fibroblasts in the cellular pathogenesis of intestinal infection and inflammation caused by EPEC requires elucidation. Earlier we reported the lipopolysaccharide (LPS)-induced cell proliferation, and collagen synthesis and downregulation of nitric oxide in lamina propria fibroblasts. In this report, we present the profile of cytokines and adhesion molecules in the cultured and characterized human small intestinal lamina propria fibroblasts in relation to neutrophil migration and adhesion in response to lipopolysaccharide (LPS) extracted from EPEC 055:B5. Upon interaction with LPS (1-10 micrograms/ml), lamina propria fibroblasts produced a high level of proinflammatory mediators, interleukin (IL)-1alpha, IL-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha and cell adhesion molecules (CAM) such as intercellular cell adhesion molecule (ICAM), A-CAM, N-CAM and vitronectin in a time-dependent manner. LPS induced cell-associated IL-1alpha and IL-1beta, and IL-6, IL-8 and TNF-alpha as soluble form in the supernatant. Apart from ICAM, vitronectin, A-CAM, and N-CAM proteins were strongly induced in lamina propria fibroblasts by LPS. Adhesion of PBMC to LPS-treated lamina propria fibroblasts was ICAM-dependent. LPS-induced ICAM expression in lamina propria fibroblasts was modulated by whole blood, PBMC and neutrophils. Conditioned medium of LPS-treated lamina propria fibroblasts remarkably enhanced the neutrophil migration. The migration of neutrophils was inhibited by anti-IL-8 antibody. Co-culture of fibroblasts with neutrophils using polycarbonate membrane filters exhibited time-dependent migration of neutrophils. These findings indicate that the coordinate production of proinflammatory cytokines and adhesion molecules in lamina propria fibroblasts which do not classically belong to the immune system can influence the local inflammatory reactions at the intestinal mucosal site during bacterial infections and can influence the immune cell population residing in the lamina propria.  相似文献   

11.
Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.  相似文献   

12.
Immune system impairment and increased susceptibility to infection among alcohol abusers is a significant but not well-understood problem. We hypothesized that acute ethanol administration would inhibit leukocyte recruitment and endothelial cell activation during inflammation and infection. Using LPS and carrageenan air pouch models in mice, we found that physiological concentrations of ethanol (1-5 g/kg) significantly blocked leukocyte recruitment (50-90%). Because endothelial cell activation and immune cell-endothelial cell interactions are critical regulators of leukocyte recruitment, we analyzed the effect of acute ethanol exposure on endothelial cell activation in vivo using the localized Shwartzman reaction model. In this model, ethanol markedly suppressed leukocyte accumulation and endothelial cell adhesion molecule expression in a dose-dependent manner. Finally, we examined the direct effects of ethanol on endothelial cell activation and leukocyte-endothelial cell interactions in vitro. Ethanol, at concentrations within the range found in human blood after acute exposure and below the levels that induce cytotoxicity (0.1-0.5%), did not induce endothelial cell activation, but significantly inhibited TNF-mediated endothelial cell activation, as measured by adhesion molecule (E-selectin, ICAM-1, VCAM-1) expression and chemokine (IL-8, MCP-1, RANTES) production and leukocyte adhesion in vitro. Studies exploring the potential mechanism by which ethanol suppresses endothelial cell activation revealed that ethanol blocked NF-kappaB nuclear entry in an IkappaBalpha-dependent manner. These findings support the hypothesis that acute ethanol overexposure may increase the risk of infection and inhibit the host inflammatory response, in part, by blocking endothelial cell activation and subsequent immune cell-endothelial cell interactions required for efficient immune cell recruitment.  相似文献   

13.
Ventilatory responses (tidal volume, respiratory frequency, and minute ventilation) to steady-state hypoxia and steady-state hypercapnia were measured plethysmographically in awake unrestrained adult rats, before and after subcutaneous injection of placebo (saline) or naloxone in doses up to 5.0 mg/kg. Naloxone did not alter the ventilatory responses to hypoxia or hypercapnia.  相似文献   

14.
Lung inflammatory responses in the absence of infection are considered to be one of primary mechanisms of ventilator-induced lung injury. Here, we determined the role of calpain in the pathogenesis of lung inflammation attributable to mechanical ventilation. Male C57BL/6J mice were subjected to high (28 ml/kg) tidal volume ventilation for 2 h in the absence and presence of calpain inhibitor I (10 mg/kg). To address the isoform-specific functions of calpain 1 and calpain 2 during mechanical ventilation, we utilized a liposome-based delivery system to introduce small interfering RNAs targeting each isoform in pulmonary vasculature in vivo. Mechanical ventilation with high tidal volume induced rapid (within minutes) and persistent calpain activation and lung inflammation as evidenced by neutrophil recruitment, production of TNF-α and IL-6, pulmonary vascular hyperpermeability, and lung edema formation. Pharmaceutical calpain inhibition significantly attenuated these inflammatory responses caused by lung hyperinflation. Depletion of calpain 1 or calpain 2 had a protective effect against ventilator-induced lung inflammatory responses. Inhibition of calpain activity by means of siRNA silencing or pharmacological inhibition also reduced endothelial nitric oxide (NO) synthase (NOS-3)-mediated NO production and subsequent ICAM-1 phosphorylation following high tidal volume ventilation. These results suggest that calpain activation mediates early lung inflammation during ventilator-induced lung injury via NOS-3/NO-dependent ICAM-1 phosphorylation and neutrophil recruitment. Inhibition of calpain activation may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.  相似文献   

15.
Patients with acute respiratory distress syndrome undergoing mechanical ventilation may be exposed to both high levels of stretch and high levels of oxygen. We hypothesized that the combination of high stretch and hyperoxia promotes loss of epithelial adhesion and impairs epithelial repair mechanisms necessary for restoration of barrier function. We utilized a model of high tidal volume mechanical ventilation (25 ml/kg) with hyperoxia (50% O(2)) in rats to investigate alveolar type II (AT2) cell adhesion and focal adhesion signaling. AT2 cells isolated from rats exposed to hyperoxia and high tidal volume mechanical ventilation (MVHO) exhibited significantly decreased cell adhesion and reduction in phosphotyrosyl levels of focal adhesion kinase (FAK) and paxillin compared with control rats, rats exposed to hyperoxia without ventilation (HO), or rats ventilated with normoxia (MV). MV alone increased phosphorylation of p130(Cas). RhoA activation was increased by MV, HO, and the combination of MV and HO. Treatment of MVHO cells with keratinocyte growth factor (KGF) for 1 h upon isolation reduced RhoA activity and restored attachment to control levels. Attachment and migration of control AT2 cells was significantly decreased by constitutively active RhoA or a kinase inactive form of FAK (FRNK), whereas expression of dominant negative RhoA in cells from MVHO-treated rats restored cell adhesion. Mechanical ventilation with hyperoxia promotes changes in focal adhesion proteins and RhoA in AT2 cells that may be deleterious for cell adhesion and migration.  相似文献   

16.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

17.
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.  相似文献   

18.
19.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

20.
It was the purpose of this study to determine the effects of the in vivo administration of endotoxin on certain in vitro hepatocyte and Kupffer cell functions. An Alzet osmotic pump that contained endotoxin (LPS, 2.5 mg/100g) was implanted into the peritoneal cavity of 300g guinea pigs and delivered the endotoxin over a period of four days. In vivo administration of LPS did not cause a change in the in vitro release of albumin by isolated hepatocytes. However, when hepatocytes were co-cultured with Kupffer cells there was a significant decrease in albumin release for both control and LPS-treated animals. There was no difference between control and LPS-treated animals in the release of C3 by hepatocytes. However, there was a significant increase over the control group in C3 release by Kupffer cells from LPS-treated animals. When hepatocytes and Kupffer cells were cultured together, their release of C3 was not additive. Kupffer cells from LPS-treated animals released significantly greater amounts of PGE2 than control animals when stimulated in vitro with LPS. Thus, these Kupffer cells appeared to be primed to respond to an in vitro challenge of LPS. Kupffer cells from LPS-treated animals had significantly depressed antibody dependent cellular cytotoxicity (ADCC). This endotoxin model is useful for determining the in vivo effects of endotoxin on cellular function and gives some indirect evidence for the detrimental effects of LPS on the immune system and host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号