首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf senescence and activities of the antioxidant enzymes   总被引:1,自引:0,他引:1  
Senescence is a genetically regulated process that involves decomposition of cellular structures and distribution of the products of this degradation to other plant parts. Reactions involving reactive oxygen species are the intrinsic features of these processes and their role in senescence is suggested. The malfunction of protection against destruction induced by reactive oxygen species could be the starting point of senescence. This article reviews biochemical changes during senescence in relation to reactive oxygen species and changes in antioxidant protection.  相似文献   

2.
Allocation rules between ornamental and other functional traits of birds may differ among individuals and vary with environmental conditions. We supplemented roller (Coracias garrulus) nestlings with methionine in a between‐nest design to investigate the way in which the sex and position in the hatching hierarchy affect the allocation of resources among growth, immunity, and plumage coloration. Methionine induces the production of lymphocytes at expense of growth; thus, we used it to manipulate growth and immunity, which are two traits likely to compromise plumage coloration. We predicted that late‐hatched chicks within a brood (juniors) compared to early‐hatched chicks (seniors) should allocate more to traits directly providing fitness than to ornamental traits because juniors are more affected than seniors by sibling competition. The methionine treatment effectively enhanced the production of lymphocytes in experimental broods. This appeared to be at the expense of plumage coloration in junior nestlings because, in supplemented nests, junior males showed a trend to display less greenish bellies than junior males from control nests. However, juniors from supplemented nests maintained wing growth as in control juniors. The plumage coloration of seniors was unaffected by the methionine supplementation, although they paid the costs of lymphocyte production at a level of growth that was reduced compared to senior nestlings in control nests. Hence, sex, and hatching order affected resource allocation among growth, immunity, and plumage coloration of roller nestlings. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 500–511.  相似文献   

3.
The immunocompetence handicap hypothesis proposes that testosterone mediates a trade-off between sexual signalling and immunocompetence in males. Such a trade-off could favour the reliability of sexual signals on the basis that testosterone required for signal expression also promotes immunosuppression. However, the immunosuppressive activity of testosterone has not been convincingly demonstrated. We propose that the optimal solution to the testosterone-mediated trade-off should change with age, explaining ambiguous results in the past. Testosterone and ageing would promote two simultaneous immunosuppressive challenges unaffordable for low-quality males. Oxidative stress, as intimately related to ageing and immunosenescence, could contribute to enhance signal reliability. In this context, traits coloured by carotenoids (yellow–red traits) could play a crucial role due to the immunostimulatory and antioxidant properties of these pigments. Here, old and middle-aged male red-legged partridges were treated with testosterone or manipulated as controls. In the presence of high-testosterone levels, middle-aged males increased both circulating carotenoid levels and colour expression, whereas their cell-mediated immunity was not significantly altered. However, in old males, neither circulating carotenoids nor sexual signalling increased when treated with testosterone, but immunosuppression was detected. The link between testosterone and carotenoids could favour the reliability of sexual signals throughout the life.  相似文献   

4.
Understanding how populations and communities respond to competition is a central concern of ecology. A seminal theoretical solution first formalised by Levins (and re‐derived in multiple fields) showed that, in theory, the form of a trade‐off should determine the outcome of competition. While this has become a central postulate in ecology it has evaded experimental verification, not least because of substantial technical obstacles. We here solve the experimental problems by employing synthetic ecology. We engineer strains of Escherichia coli with fixed resource allocations enabling accurate measurement of trade‐off shapes between bacterial survival and multiplication in multiple environments. A mathematical chemostat model predicts different, and experimentally verified, trajectories of gene frequency changes as a function of condition‐specific trade‐offs. The results support Levins' postulate and demonstrates that otherwise paradoxical alternative outcomes witnessed in subtly different conditions are predictable.  相似文献   

5.
Parasites are known to profoundly affect resource allocation in their host. In order to investigate the effects of Cryphonectria Hypovirus 1 (CHV1) on the life‐history traits of its fungal host Cryphonectria parasitica, an infection matrix was completed with the cross‐infection of six fungal isolates by six different viruses. Mycelial growth, asexual sporulation, and spore size were measured in the 36 combinations, for which horizontal and vertical transmission of the viruses was also assessed. As expected by life‐history theory, a significant negative correlation was found between host somatic growth and asexual reproduction in virus‐free isolates. Interestingly this trade‐off was found to be positive in infected isolates, illustrating the profound changes in host resource allocation induced by CHV1 infection. A significant and positive relationship was also found in infected isolates between vertical transmission and somatic growth. This last relationship suggests that in this system, high levels of virulence could be detrimental to the vertical transmission of the parasite. Those results underscore the interest of studying host–parasite interaction within the life‐history theory framework, which might permit a more accurate understanding of the nature of the modifications triggered by parasite infection on host biology.  相似文献   

6.
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

7.
In social animals, inbreeding depression may manifest by compromising care or resources individuals receive from inbred group members. We studied the effects of worker inbreeding on colony productivity and investment in the ant Formica exsecta. The production of biomass decreased with increasing inbreeding, as did biomass produced per worker. Inbred colonies produced fewer gynes (unmated reproductive females), whereas the numbers of males remained unchanged. As a result, sex ratios showed increased male bias, and the fraction of workers increased among the diploid brood. Males raised in inbred colonies were smaller, whereas the weight of gynes remained unchanged. The results probably reflect a trade-off between number and quality of offspring, which is expected if the reproductive success of gynes is more dependent on their weight or condition than it is for males. As males are haploid (with the exception of abnormal diploid males produced in very low frequencies in this population), and therefore cannot be inbred themselves, the effect on their size must be mediated through the workers of the colony. We suggest the effects are caused by the inbred workers being less proficient in feeding the growing larvae. This represents a new kind of social inbreeding depression that may affect sex ratios as well as caste fate in social insects.  相似文献   

8.
Recent empirical evidence suggests that trade‐off relationships can evolve, challenging the classical image of their high entrenchment. For energy reliant traits, this relationship should depend on the endocrine system that regulates resource allocation. Here, we model changes in this system by mutating the expression and conformation of its constitutive hormones and receptors. We show that the shape of trade‐offs can indeed evolve in this model through the combined action of genetic drift and selection, such that their evolutionarily expected curvature and length depend on context. In particular, the shape of a trade‐off should depend on the cost associated with resource storage, itself depending on the traded resource and on the ecological context. Despite this convergence at the phenotypic level, we show that a variety of physiological mechanisms may evolve in similar simulations, suggesting redundancy at the genetic level. This model should provide a useful framework to interpret and unify the overly complex observations of evolutionary endocrinology and evolutionary ecology.  相似文献   

9.
Life‐history theory assumes that reproduction and lifespan are constrained by trade‐offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta‐analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non‐breeders reveal that transition to the reproductive state is associated with a step‐change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally‐derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life‐history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life‐history trade‐offs.  相似文献   

10.
Offspring size can have large and direct fitness implications, but we still do not have a complete understanding of what causes offspring size to vary. Daphnia (water fleas) generally produce fewer and larger offspring when food is limited. Here, we use a mathematical model to show that this could be explained by either: (1) an advantage of producing larger eggs when food is limited; or (2) a lower boundary on egg volume (below which eggs do not have sufficient resources to be viable), that is similar in volume to the evolutionarily stable egg volume predicted by standard clutch size models. We tested the first possibilities experimentally by placing offspring from mothers kept at two food treatments (high and low - leading to relatively small and large eggs respectively) into two food treatments (same as maternal treatments, in a fully factorial design) and measuring their fitness (reproduction, age at maturity, and size at maturity). We also tested survival under starvation conditions of offspring produced from mothers at low and high food treatments. We found that (larger) offspring produced by low-food mothers actually had lower fitness as they took longer to reproduce, regardless of their current food treatment. Additionally, we found no survival advantage to being born of a food-stressed mother. Consequently, our results do not support the hypothesis that there is an advantage to producing larger eggs when food is limited. In contrast, data from the literature support the importance of a lower boundary on egg size.  相似文献   

11.
Sexual selection on male coloration has been implicated in the evolution of colourful species flocks of East African cichlid fish. During adaptive radiations, animals diverge in multiple phenotypic traits, but the role of physiology has received limited attention. Here, we report how divergence in physiology may contribute to the stable coexistence of two hybridizing incipient species of cichlid fish from Lake Victoria. Males of Pundamilia nyererei (males are red) tend to defeat those of Pundamilia pundamilia (males are blue), yet the two sibling species coexist in nature. It has been suggested that red males bear a physiological cost that might offset their dominance advantage. We tested the hypothesis that the two species differ in oxidative stress levels and immune function and that this difference is correlated with differences in circulating steroid levels. We manipulated the social context and found red males experienced significantly higher oxidative stress levels than blue males, but only in a territorial context when colour and aggression are maximally expressed. Red males exhibited greater aggression levels and lower humoral immune response than blue males, but no detectable difference in steroid levels. Red males appear to trade off increased aggressiveness with physiological costs, contributing to the coexistence of the two species. Correlated divergence in colour, behaviour and physiology might be widespread in the dramatically diverse cichlid radiations in East African lakes and may play a crucial role in the remarkably rapid speciation of these fish.  相似文献   

12.
Global warming and its associated increase in temperature extremes pose a substantial challenge on natural systems. Tropical ectotherms, living close to their (upper) critical thermal limits, may be particularly vulnerable to global warming, yet they are as a group understudied. Most studies assessing fitness effects under global warming focused on life‐history correlates such as body size and largely neglected immune function. Furthermore they did not consider to what extent temperature effects may be modulated under resource‐based trade‐offs. Against this background we here investigate effects of temperature extremes on fitness‐related adult traits (viz. body mass, fat content, and two key parameters of arthropod immune function: phenoloxidase (PO) activity and haemocyte numbers) at different levels of larval and adult food stress in the tropical butterfly Bicyclus anynana. Body mass and PO activity decreased after short‐term larval food stress, but not fat content and haemocyte numbers (probably owing to compensatory mechanisms during further development). Longer‐term food deprivation in the adult stage, in contrast, diminished performance throughout, confirming that the feeding treatments chosen imposed stress. Temperature manipulations yielded contrary responses between life‐history correlates and immune function: while body mass and fat content increased by increasing temperatures, PO activity and haemocyte numbers decreased. The latter was particularly pronounced under adult food stress, suggesting a resource‐allocation trade‐off. Our data suggest that global warming will not only reduce performance through direct effects of thermal stress, but also through secondary effects on adult immune function, which may be missed when exclusively focussing on other life‐history correlates.  相似文献   

13.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

14.
Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae) display distinct wing variation, and a physiological trade‐off between reproduction and flight muscles has been observed in long‐winged (LW) and short‐winged (SW) females. To understand the physiological basis of this trade‐off, we investigated the difference in the food digestion capability and digestive enzyme activity between LW and SW females. We found that the efficiency of conversion of digested food into body matter of SW females was significantly higher than that of the LW females, although there was no difference in the approximate digestibility between LW and SW females during the first 12 days after the adult emergence. Similarly, growth and relative growth were significantly higher in SW females. The food consumption of SW females was significantly higher than that of the LW females only in the first 6 days after the adult emergence, suggesting enhanced ovary development in SW females is probably because of the elevated efficiency of conversion of digested food into body matter coupled with greater consumption in the early stage after the adult emergence. Trypsin‐like activity was higher in SW females than in LW females, whereas no differences in the fresh weight of the midguts (including content) were observed between LW and SW females at 1, 3, or 5 h after refeeding after starvation for 18 h. In contrast, amylase activity varied significantly depending on time lapse after refeeding, being significantly higher in LW females than in SW females at 1 h after refeeding, but significantly lower in LW females than in SW females at 3 and 5 h after refeeding. The lipase activity displayed a similar trend in both LW and SW females after refeeding, with an initial decline followed by a slight increase; and no difference was observed between LW and SW females at any stage after refeeding.  相似文献   

15.
Several hypotheses have been put forward to explain the evolution of senescence. One of the leading hypotheses, the disposable soma hypothesis, predicts a trade‐off, whereby early‐life investment in reproduction leads to late‐life declines in survival (survival senescence). Testing this hypothesis in natural populations is challenging, but important for understanding the evolution of senescence. We used the long‐term data set from a contained, predator‐free population of individually marked Seychelles warblers (Acrocephalus sechellensis) to investigate how age‐related declines in survival are affected by early‐life investment in reproduction and early‐life environmental conditions. The disposable soma hypothesis predicts that higher investment in reproduction, or experiencing harsh conditions during early life, will lead to an earlier onset, and an increased rate, of senescence. We found that both sexes showed similar age‐related declines in late‐life survival consistent with senescence. Individuals that started breeding at a later age showed a delay in survival senescence, but this later onset of breeding did not result in a less rapid decline in late‐life survival. Although survival senescence was not directly related to early‐life environmental conditions, age of first breeding increased with natal food availability. Therefore, early‐life food availability may affect senescence by influencing age of first breeding. The disposable soma hypothesis of senescence is supported by delayed senescence in individuals that started breeding at a later age and therefore invested less in reproduction.  相似文献   

16.
Chilling-enhanced photooxidation is the light- and oxygen-dependent bleaching of photosynthetic pigments that occurs upon the exposure of chilling-sensitive plants to temperatures below approximately 10 °C. The oxidants responsible for the bleaching are the reactive oxygen species (ROS) singlet oxygen (1O2), superoxide anion radical (O 2 ,hydrogen peroxide (H2O2), the hydroxyl radical (OH·), and the monodehydroascorbate radical (MDA) which are generated by a leakage of absorbed light energy from the photosynthetic electron transport chain. Cold temperatures slow the energy-consuming Calvin-Benson Cycle enzymes more than the energy-transducing light reactions, thus causing leakage of energy to oxygen. ROS and MDA are removed, in part, by the action of antioxidant enzymes of the Halliwell/Foyer/Asada Cycle. Chloroplasts also contain high levels of both lipid- and water-soluble antioxidants that act alone or in concert with the HFA Cycle enzymes to scavenge ROS. The ability of chilling-resistant plants to maintain active HFA Cycle enzymes and adequate levels of antioxidants in the cold and light contributes to their ability to resist chilling-enhanced photooxidation. The absence of this ability in chilling-sensitive species makes them susceptible to chilling-enhanced photooxidation. Chloroplasts may reduce the generation of ROS by dissipating the absorbed energy through a number of quenching mechanisms involving zeaxanthin formation, state changes and the increased usage of reducing equivalents by other anabolic pathways found in the stroma. During chilling in the light, ROS produced in chilling-sensitive plants lower the redox potential of the chloroplast stroma to such a degree that reductively-activated regulatory enzymes of the Calvin Cycle, sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) and fructose 1,6 bisphosphatase (EC 3.1.3.11), are oxidatively inhibited. This inhibition is reversible in vitro with a DTT treatment indicating that the enzymes themselves are not permanently damaged. The inhibition of SBPase and FBPase may fully explain the inhibition in whole leaf gas exchange seen upon the rewarming of chilling-sensitive plants chilled in the light. Methods for the study of ROS in chilling-enhanced photooxidation and challenges for the future are discussed.Abbreviations ASP ascorbate-specific peroxidase - -TH reduced -tocopherol - DTT dithiothreitol - FBP fructose 1,6 bisphosphate - FBPase fructose 1,6 bisphosphatase (EC 3.1.3.11) - HFA Cycle the Halliwell/Foyer/Asada Cycle responsible for the enzymatic removal of ROS in the chloroplast stroma - MDA monodehydroascorbate radical - MDAR monodehydroascorbate reductase - ROS reactive oxygen species - SBP sedohepulose 1,7 bisphosphate - SBPase sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) - SOD superoxide dismutase  相似文献   

17.
Abstract. Selection for the capacity for prolonged tethered flight in Spodoptera exempta resulted in heavier moths, with significantly larger abdominal glyceride glycerol contents in females of two flight-selected strains (87% and 49% higher than in the comparable non-selected strain) and in males of one of them (80% higher). All flight-selected strains contained individuals of both sexes with very high abdominal glyceride levels. There was no significant relationship between abdominal total glyceride glycerol after flight and flight duration for non-selected moths, but an inverse linear relationship was evident in both sexes from a flight-selected strain. Oxygen consumption during tethered flights by flight-selected moths ranged from 28.2 to 56.6 ml O2g-1h-1.
Using these and previous data, notional energy budgets were calculated to account for flight, reproduction and resting metabolism for non-selected and flight-selected S. exempta flown on the flight balances and provided thereafter with distilled water. The results confirm the trade-off between flight and reproduction reported by Gunn et al. (1989). A similar approach using data for two non-selected strains from the field in Kenya indicated genetic variation in migratory potential, reflected both in pre-reproductive period and resources available for flight. We conclude that elevated glyceride levels are a component of the migratory syndrome in S. exempta and that this is the major factor underlying the curvilinear relationship between flight duration and fecundity obtained by Gunn et al. (1989).  相似文献   

18.
Compared with non‐invasive species, invasive plant species may benefit from certain advantageous traits, for example, higher photosynthesis capacity and resource/energy‐use efficiency. These traits can be preadapted prior to introduction, but can also be acquired through evolution following introduction to the new range. Disentangling the origins of these advantageous traits is a fundamental and emerging question in invasion ecology. We conducted a multiple comparative experiment under identical environmental condition with the invasive haplotype M lineage of the wetland grass Phragmites australis and compared the ecophysiological traits of this invasive haplotype M in North America with those of the European ancestor and the conspecific North American native haplotype E lineage, P. australis ssp. americanus. The invasive haplotype M differed significantly from the native North American conspecific haplotype E in several ecophysiological and morphological traits, and the European haplotype M had a more efficient photosynthetic apparatus than the native North American P. australis ssp. americanus. Within the haplotype M lineage, the introduced North American P. australis exhibited different biomass allocation patterns and resource/energy‐use strategies compared to its European ancestor group. A discriminant analysis of principal components separated the haplotype M and the haplotype E lineages completely along the first canonical axis, highly related to photosynthetic gas‐exchange parameters, photosynthetic energy‐use efficiency and payback time. The second canonical axis, highly related to photosynthetic nitrogen use efficiency and construction costs, significantly separated the introduced P. australis in North America from its European ancestor. Synthesis. We conclude that the European P. australis lineage was preadapted to be invasive prior to its introduction, and that the invasion in North America is further stimulated by rapid post‐introduction evolution in several advantageous traits. The multicomparison approach used in this study could be an effective approach for distinguishing preadaptation and post‐introduction evolution of invasive species. Further research is needed to link the observed changes in invasive traits to the genetic variation and the interaction with the environment.  相似文献   

19.
Beech (Fagus sylvatica L.) seeds, which are tolerant to desiccation, freshly harvested after shedding, were dried at 15 and 30 °C and at the similar rate, to 9% of water content. A slight decrease of germinability was observed in seeds dried at 30 °C. Moreover, there was a notably higher solute leakage and a higher level of lipid hydroperoxides. Seeds dried at 30 °C contained less PC and PE and a lower level of unsaturated fatty acids (18:2 and 18:3), sterols and α-tocopherol. These results as well as changes in ascorbate and glutathione contents provide conclusive evidence for the presence of oxidative stress in beech seeds desiccated at 30 °C, which damaged membranes due to increased lipid peroxidation and changed membrane structure leading to their enhanced sensibility to free radical attack during storage.  相似文献   

20.

1. 1.Rana perezi adult frogs were acclimated to cold (10 ± 2°C) and warm (29 ± 1°C) temperatures for 4 months.

2. 2.After acclimation, a partial compensation of the oxygen consumption of the animals was found because of a reduction of its thermal sensitivity.

3. 3.Activities of liver and lung catalase, selenium (Se)-dependent and Se-independent glutathione peroxidases were not changed by thermal acclimation.

4. 4.Tissue peroxidation (TBA-RS) increased in the liver of heat acclimated animals.

5. 5.Hydroperoxide detoxifying enzyme activities did not show inverse compensation of temperature during acclimation. It is proposed that the pattern of thermal compensation shown by these enzymes in different species depends on a variety of factors including: (a) the thermal sensitivities of hydroperoxide producing and scavenging systems; (b) the changes induced by acclimation in the rate of hydroperoxide generation.

Author Keywords: Temperature acclimation; thermal compensation; oxygen radicals; hydroperoxides; catalase; glutathione peroxidase; lipid peroxidation; oxygen consumption; hydrogen peroxide; oxidative stress; free radicals; frog; acclimation; compensation; detoxifying enzymes; Rana perezi  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号