共查询到20条相似文献,搜索用时 0 毫秒
1.
L-Propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector 总被引:5,自引:0,他引:5
Vanella A Russo A Acquaviva R Campisi A Di Giacomo C Sorrenti V Barcellona ML 《Cell biology and toxicology》2000,16(2):99-104
L-Propionylcarnitine, a propionyl ester of L-carnitine, increases the intracellular pool of L-carnitine. It exhibits a high
affinity for the enzyme carnitine acetyltransferase (CAT) and, thus, is readily converted into propionyl-coenzyme A and free
carnitine.
It has been reported that L-propionylcarnitine possesses a protective action against heart ischemia–reperfusion injury; however,
the antioxidant mechanism is not yet clear. L-Propionylcarnitine might reduce the hydroxyl radical production in the Fenton
system, by chelating the iron required for the generation of hydroxyl radicals. To obtain a better insight into the antiradical
mechanism of L-propionylcarnitine, the present research analyzed the superoxide scavenging capacity of L-propionylcarnitine
and its effect on linoleic acid peroxidation. In addition, the effect of L-propionylcarnitine against DNA cleavage was estimated
using pBR322 plasmid. We found that L-propionylcarnitine showed a dose-dependent free-radical scavenging activity. In fact,
it was able to scavenge superoxide anion, to inhibit the lipoperoxidation of linoleic acid, and to protect pBR322 DNA from
cleavage induced by H2O2 UV-photolysis.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
2.
Superoxide is continuously generated in the erythrocytes, and oxyhaemoglobin from different animals including fish, amphibians,
reptiles, birds, flying mammals, mammals and human beings acts as a scavenger of superoxide. The approximate rate constants
of the reaction between superoxide and oxyhaemoglobin of different animals are 0.32-1.6 × 107M-1 s-1. Results obtained with anion ligands like CN- and N
3
-
indicate that superoxide preferentially reacts with anion ligand-bound deoxyhaemoglobin. Carbonmonoxyhaemoglobin and methaemoglobin
are ineffective. Work with photochemically generated oxyradical indicate that oxyhaemoglobin may also act as a scavenger of
singlet oxygen. The rate constant of the reaction between superoxide and human oxyhaemoglobin is Kapp= 6.5×106 M-1 s-1, which is about three orders less than Ksod(2× 109 M-1 s-1). Thus, in the erythrocytes, oxyhaemoglobin would appear to act as a second line of defence. Oxyhaemoglobin appears to be
as effective as superoxide dismutase for scavenging superoxide in the erythrocytes. 相似文献
3.
Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide 总被引:1,自引:0,他引:1
Kajita M Hikosaka K Iitsuka M Kanayama A Toshima N Miyamoto Y 《Free radical research》2007,41(6):615-626
Bimetallic nanoparticles consisting of gold and platinum were prepared by a citrate reduction method and complementarily stabilized with pectin (CP-Au/Pt). The percent mole ratio of platinum was varied from 0 to 100%. The CP-Au/Pt were alloy-structured. They were well dispersed in water. The average diameter of platinum nanoparticles (CP-Pt) was 4.7 +/- 1.5 nm. Hydrogen peroxide (H(2)O(2)) was quenched by CP-Au/Pt consisting of more than 50% platinum whereas superoxide anion radical (O(2)(-)) was quenched by any CP-Au/Pt. The CP-Au/Pt quenched these two reactive oxygen species in dose-dependent manners. The CP-Pt is the strongest quencher. The CP-Pt decomposed H(2)O(2) and consequently generated O(2) like catalase. The CP-Pt actually quenched O(2)(-) which was verified by a superoxide dismutase (SOD) assay kit. This quenching activity against O(2)(-) persisted like SOD. Taken together, CP-Pt may be a SOD/catalase mimetic which is useful for medical treatment of oxidative stress diseases. 相似文献
4.
5.
Ceruloplasmin. A scavenger of superoxide anion radicals. 总被引:15,自引:0,他引:15
I M Goldstein H B Kaplan H S Edelson G Weissmann 《The Journal of biological chemistry》1979,254(10):4040-4045
6.
The copper- and zinc-containing superoxide dismutase can catalyze the oxidation of ferrocyanide by O(2) as well as the reduction of ferricyanide by O(2). Thus, it can act as a superoxide dismutase (SOD), a superoxide reductase (SOR), and a superoxide oxidase (SOO). The human manganese-containing SOD does not exert SOR or SOO activities with ferrocyanide or ferricyanide as the redox partners. It is possible that some biological reductants can take the place of ferrocyanide and can also interact with human manganese-containing superoxide dismutase, thus making the SOR activity a reality for both SODs. The consequences of this possibility vis à vis H(2)O(2) production, the overproduction of SODs, and the role of copper- and zinc-containing superoxide dismutase mutations in causing familial amyotrophic lateral sclerosis are discussed, as well as the likelihood that the biologically effective SOD mimics, as described to date, actually function as SORs. 相似文献
7.
The effect of tiron (4,5-dihydroxy-1,3-benzene disulfonic acid) on the binding of Ca2+ and its effect on vascular responses of the rat perfused mesenteric bed was studied at concentrations of tiron that are used widely to scavenge superoxide anion. In competition assays in buffered solutions with no tissue present, tiron decreased the fluorescence ratio of fura-FF, a measure of [Ca2+]: the inhibition constant (Ki) of tiron with Ca2+ was 0.692 +/- 0.036 mM. In the mesenteric bed perfused at constant flow and preconstricted with 90 mM KCl, tiron evoked decreases in perfusion pressure of the mesenteric bed in a concentration-dependent manner (Rmax = 43.58 +/- 2.6 mmHg; EC50 = 1.46 +/- 0.33 mM). This vasodilator effect of tiron was similar in the presence of the superoxide anion scavenger, tempol (Rmax = 46.12 +/- 1.87 mmHg; EC50 = 1.34 +/- 0.27 mM). In the presence of 90 mM KCl, increasing concentrations of Ca2+ increased perfusion pressure and tiron shifted the concentration-response curve to Ca2+ to the right. In freshly drawn blood from rats, tiron increased clotting time. The data indicate that tiron binds Ca2+ at concentrations at or below those commonly used to scavenge superoxide anion, an action that may be responsible for a variety of biological responses. The interpretation of effects of tiron in previous work on the role of superoxide anion may need to be re-evaluated. 相似文献
8.
In all living cells, levels of reactive oxygen species are kept in check by antioxidative activities. Superoxide radicals are dismutated by superoxide dismutases, by other enzymes and by nonenzymatic compounds. This protocol describes the quantification of superoxide scavenging activities (SOSA). It is based on the inhibition of chemiluminescence emitted by coelenterazine when oxidized by superoxide. SOSA is a summary parameter comprising all high-molecular-weight superoxide scavengers in a biological sample. Enzymes and nonenzymatic scavengers can also be distinguished. The SOSA assay is quick, reproducible and applicable to fields as diverse as medical diagnostics, food sciences, or agriculture. The protocol presented here requires about 2 working days to complete. 相似文献
9.
AbstractSuperoxide radical represents one of the most biologically relevant reactive oxygen species involved in numerous physiological and pathophysiological processes. Superoxide measurement through the decay of an electron paramagnetic resonance (EPR) signal of a triarylmethyl (TAM) radical possesses the advantage of a high selectivity and relatively high rate constant of TAM reaction with the superoxide. Hereby we report a straightforward synthesis and characterization of a TAM–TAM biradical showing a high reactivity with superoxide (second-order rate constant, (6.7?±?0.2)?×?103 M?1 s?1) enabling the measurement of superoxide radical by following the increase of a sharp EPR signal associated with the formation of a TAM-quinone-methide monoradical product. 相似文献
10.
Ascorbic acid as a scavenger of singlet oxygen. 总被引:14,自引:0,他引:14
11.
The role of metallothionein (MT) in the scavenging of superoxide radicals (*O2-) generated by macrophages has been examined. The present work has focused on the effects of added cadmium, a known inducer of MT biosynthesis, on determined amounts of superoxide radicals produced by in vitro cultured rat peritoneal macrophages on their stimulation with phorbol-12-myristate-13-acetate (PMA). The levels of superoxide radicals (*O2-) have been found to decrease when cadmium was added to cells exposed to PMA. However, substantially lower levels of MT have been determined in this case compared to cells untreated with PMA. This effect could be reversed by incubation of the PMA and cadmium-treated cells with a reducing agent, 2-mercaptoethanol (2-ME). Results suggest that *O2- caused thiolate oxidation and subsequent metal loss, thus reducing the cellular MT content as quantified by the silver saturation METHOD: This conclusion is supported by cell-free experiments in which the oxidation of rabbit MT-I by a xanthine/xanthine-oxidase system could be reversed by its subsequent reduction with 2-ME. The data presented provide direct evidence of the involvement of MT in scavenging superoxide radicals in living cells. 相似文献
12.
It has been found that in Chlamydomonas reinhardtii cells, under high-light stress, the level of reduced plastoquinone considerably increases while in the presence of pyrazolate, an inhibitor of plastoquinone and tocopherol biosynthesis, the content of reduced plastoquinone quickly decreases, similarly to α-tocopherol. In relation to chlorophyll, after 18 h of growth under low light with the inhibitor, the content of α-tocopherol was 22.2 mol/1000 mol chlorophyll and that of total plastoquinone (oxidized and reduced) was 19 mol/1000 mol chlorophyll, while after 2 h of high-light stress the corresponding amounts dropped to 6.4 and 6.2 mol/1000 mol chlorophyll for α-tocopherol and total plastoquinone, respectively. The degradation of both prenyllipids was partially reversed by diphenylamine, a singlet oxygen scavenger. It was concluded that plastoquinol, as well as α-tocopherol is decomposed under high-light stress as a result of a scavenging reaction of singlet oxygen generated in photosystem II. The levels of both α-tocopherol and of the reduced plastoquinone are not affected significantly in the absence of the inhibitor due to a high turnover rate of both prenyllipids, i.e., their degradation is compensated by fast biosynthesis. The calculated turnover rates under high-light conditions were twofold higher for total plastoquinone (0.23 nmol/h/ml of cell culture) than for α-tocopherol (0.11 nmol/h/ml). We have also found that the level of α-tocopherolquinone, an oxidation product of α-tocopherol, increases as the α-tocopherol is consumed. The same correlation was also observed for γ-tocopherol and its quinone form. Moreover, in the presence of pyrazolate under low-light growth conditions, the synthesis of plastoquinone-C, a hydroxylated plastoquinone derivative, was stimulated in contrast to plastoquinone, indicating for the first time a functional role for plastoquinone-C. The presented data also suggest that the two plastoquinones may have different biosynthetic pathways in C. reinhardtii. 相似文献
13.
Hsiao G Teng CM Sheu JR Cheng YW Lam KK Lee YM Wu TS Yen MH 《Biochimica et biophysica acta》2001,1525(1-2):77-88
The antioxidant properties of cinnamophilin were evaluated by studying its ability to react with relevant reactive oxygen species, and its protective effect on cultured cells and biomacromolecules under oxidative stress. Cinnamophilin concentration-dependently suppressed non-enzymatic iron-induced lipid peroxidation in rat brain homogenates with an IC50 value of 8.0+/-0.7 microM and iron ion/ADP/ascorbate-initiated rat liver mitochondrial lipid peroxidation with an IC50 value of 17.7+/-0.2 microM. It also exerted an inhibitory activity on NADPH-dependent microsomal lipid peroxidation with an IC50 value of 3.4+/-0.1 microM without affecting microsomal electron transport of NADPH-cytochrome P-450 reductase. Both 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azo-bis(2-amidinopropane) dihydrochloride-derived peroxyl radical tests demonstrated that cinnamophilin possessed marked free radical scavenging capacity. Cinnamophilin significantly protected cultured rat aortic smooth muscle cells (A7r5) against alloxan/iron ion/H2O2-induced damage resulting in cytoplasmic membranous disturbance and mitochondrial potential decay. By the way, cinnamophilin inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity and thiobarbituric acid-reactive substance formation in a concentration-dependent manner. On the other hand, it was reactive toward superoxide anions generated by the xanthine/xanthine oxidase system and the aortic segment from aged spontaneously hypertensive rat. Furthermore, cinnamophilin exerted a divergent effect on the respiratory burst of human neutrophil by different stimulators. Our results show that cinnamophilin acts as a novel antioxidant and cytoprotectant against oxidative damage. 相似文献
14.
《Redox report : communications in free radical research》2013,18(2):54-62
AbstractThe present study was undertaken to evaluate the effect of the aqueous extract of Podophyllum hexandrum against free radical-mediated damage and also explore its anticancer activity. The extract exhibited significant activity in scavenging 1, 1-diphenyl-2-picryl-hydrazyl radicals, ?OH radical-mediated DNA damage, and lipid peroxide production in rat liver microsomes. The extract was also tested for its reducing abilities. The activity of liver marker enzymes and antioxidant defense enzymes in rat liver homogenate was assessed in control and carbon tetrachloride (CCl4)-treated animals. It was observed that CCl4-induced changes viz., increases in the activities of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, a decrease in reduced glutathione as well as decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. All these parameters showed reversal when pretreated with aqueous extract of P. hexandrum. Podophylotoxin and etoposide are the two known anticancer agents derived from P. hexandrum and interestingly the aqueous extract of P. hexandrum showed a typical DNA ladder formation in HL-60 cells confirming its role as an inducer of apoptosis. The results obtained suggest that the plant extract exhibits inhibition of and free radical production and lipid peroxidation, increase in antioxidant enzyme activities, revealing its antioxidant properties, and is also able to show potent anticancer activity as depicted by its ability to cause fragmentation of DNA. 相似文献
15.
There is increasing evidence that reactive oxygen species (ROS), a group of unstable and highly reactive chemical molecules, play a key role in regulating and maintaining life-history trade-offs. Upregulation of ROS in association with immune activation is costly because it may result in an imbalance between pro- and antioxidants and, hence, oxidative damage. Previous research aimed at quantifying this cost has mostly focused on changes in the pro-/antioxidant balance subsequent to an immune response. Here, we test the hypothesis that systemic ROS may constrain immune activation. We show that systemic, pre-challenge superoxide (SO) levels are negatively related to the strength of the subsequent immune response towards the mitogen phytohaemagglutinin in male, but not female painted dragon lizards (Ctenophorus pictus). We therefore suggest that systemic SO constrains immune activation in painted dragon males. We speculate that this may be due to sex-specific selection pressures on immune investment. 相似文献
16.
Gordon S 《Current biology : CB》2001,11(10):R399-R401
Recent studies have identified a macrophage-specific receptor for the clearance of haemoglobin-haptoglobin complexes, which protects the host against the toxicity of free haemoglobin. 相似文献
17.
Several copper(II) complexes with aminoacids and peptides are known to show superoxide dismutase (SOD)-like activity. EPR spectroscopy has proved to be a useful tool for studying the complex equilibria of the copper(II) ion and various ligands of biological importance in solution. In the present work, a variety of copper(II) complexes with di-, tri- and tetra-peptides containing only glycine residues (GG, GGG and GGGG) and others containing a histidyl residue in different positions (HGG, GHG, GGH and GGHG) have been investigated. EPR parameters obtained by extensive use of computer simulation of spectra lead to reliable spin Hamiltonian EPR parameters at both room temperature and in frozen solution. The molecular orbital coefficients computed from the anisotropic EPR data and the d-d electronic energies are used to characterize different arrangements of the complexes. Estimation of the scavenger activity of the complexes due to the particular environment created by the ligands around copper is discussed in the frame of the structure-activity relationship. 相似文献
18.
GP Lobo A Isken S Hoff D Babino J von Lintig 《Development (Cambridge, England)》2012,139(16):2966-2977
Carotenoids and their metabolites are widespread and exert key biological functions in living organisms. In vertebrates, the carotenoid oxygenase BCMO1 converts carotenoids such as β,β-carotene to retinoids, which are required for embryonic pattern formation and cell differentiation. Vertebrate genomes encode a structurally related protein named BCDO2 but its physiological function remains undefined. Here, we show that BCDO2 is expressed as an oxidative stress-regulated protein during zebrafish development. Targeted knockdown of this mitochondrial enzyme resulted in anemia at larval stages. Marker gene analysis and staining for hemoglobin revealed that erythropoiesis was not impaired but that erythrocytes underwent apoptosis in BCDO2-deficient larvae. To define the mechanism of this defect, we have analyzed the role of BCDO2 in human cell lines. We found that carotenoids caused oxidative stress in mitochondria that eventually led to cytochrome c release, proteolytic activation of caspase 3 and PARP1, and execution of the apoptotic pathway. Moreover, BCDO2 prevented this induction of the apoptotic pathway by carotenoids. Thus, our study identifying BCDO2 as a crucial protective component against oxidative stress establishes this enzyme as mitochondrial carotenoid scavenger and a gatekeeper of the intrinsic apoptotic pathway. 相似文献
19.
Kreutzer U Jue T 《American journal of physiology. Heart and circulatory physiology》2004,286(3):H985-H991
Recent studies have detected a (1)H nuclear magnetic resonance (NMR) reporter signal of metmyoglobin (metMb) during bradykinin stimulation of an isolated mouse heart. The observation has led to the hypothesis that Mb reacts with cellular nitric oxide (NO). However, the hypothesis depends on an unequivocal detection of metMb signals in vivo. In solution, nitrite oxidization of Mb produces a characteristic set of paramagnetically shifted (1)H NMR signals. In the upfield spectral region, MbO(2) and MbCO exhibit the gammaCH(3) Val E11 signals at -2.8 and -2.4 ppm, respectively. In the same spectral region, nitrite oxidation of Mb produces a set of signals at -3.7 and -4.7 ppm at 35 degrees C. Previous studies have confirmed the visibility of metMb signals in perfused rat myocardium. With bradykinin infusion, perfusion pressure and rate-pressure product decrease, consistent with endogenous NO formation. However, neither myocardial O(2) consumption nor high-energy phosphate levels, as reflected in the (31)P NMR signals, show any significant change. Bradykinin still triggers a similar physiological response even in the presence of CO that is sufficient to inhibit 86% Mb. In all cases, the (1)H NMR spectra from perfused rat myocardium reveal no metMb signals. The results suggest that bradykinin-induced NO does not interact significantly with cellular Mb to produce an NMR-detectable quantity of metMb in the perfused rat myocardium. As a consequence, the experiments cannot confirm the intriguing proposal that Mb acts as a cellular NO scavenger. 相似文献