首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor behavior is affected by the tumor microenvironment, composed of cancer-associated fibroblasts (CAFs). Meanwhile, hepatocellular carcinomas (HCC) with fibrous stroma reportedly exhibit aggressive behavior suggestive of tumor-stroma interaction. However, evidence of the crosstalk remains unclear. In this study, CCN2, epithelial membrane antigen (EMA), fibroblast activation protein (FAP), and keratin 19 (K19) expression was studied in 314 HCCs (cohort 1), 42 scirrhous HCCs (cohort 2), and 36 chronic hepatitis/cirrhosis specimens by immunohistochemistry. Clinicopathological parameters were analyzed according to the expressions of these markers. In tumor epithelial cells from cohort 1, CCN2 and EMA were expressed in 15.3% and 17.2%, respectively, and their expressions were more frequent in HCCs with fibrous stroma (≥5% of tumor area) than those without (P<0.05 for all); CCN2 expression was well correlated with K19 and EMA expression. In tumor stromal cells, FAP expression was found in 6.7%. In cohort 2, CCN2, EMA, and FAP expression was noted in 40.5%, 40.5%, and 66.7%, respectively, which was more frequent than that in cohort 1 (P<0.05 for all). Additionally, EMA expression was associated with the expression of K19, CCN2, and FAP (P<0.05 for all); EMA expressing tumor epithelial cells showed a topographic closeness to FAP-expressing CAFs. Analysis of disease-free survival revealed CCN2 expression to be a worse prognostic factor in both cohort 1 (P = 0.005) and cohort 2 (P = 0.023), as well as EMA as a worse prognostic factor in cohort 2 (P = 0.048). In conclusion, expression of CCN2, EMA, and FAP may be involved in the activation of CAFs in HCC, giving rise to aggressive behavior. Significant correlation between EMA-expressing tumor cells and FAP-expressing CAFs and their topographic closeness suggests possible cross-talk between tumor epithelial cells and stromal cells in the tumor microenvironment of HCC.  相似文献   

2.
As the predominant stroma cells of tumor microenvironment (TME), cancer associated fibroblasts (CAFs) are robust tumor player of different malignancies. However, less is known about the regulatory mechanism of CAFs on promoting progression of ovarian cancer (OvCA). In the present study, the conditioned medium of primary CAFs (CAF-CM) from OvCA was used to culture cell lines of epithelial ovarian cancer (EOC), and showed a potent role in promoting proliferation, migration and invasion of cancer cells. Mass spectrum (MS) analysis identified that Collapsin response mediator protein-2 (CRMP2), a microtubule-associated protein involved in diverse malignancies, derived from CAFs was a key regulator responsible for mediating these cell events of OvCA. In vitro study using recombinant CRMP2 (r-CRMP2) revealed that the protein promoted proliferation, invasion, and migration of OvCA cells through activation of hypoxia-inducible factor (HIF)-1α-glycolysis signaling pathway. The CRMP2 was abundantly expressed in OvCA, with a well correlation with metastasis and poor prognosis, as analyzed from 118 patients’ samples. Inhibition of the CRMP2 derived from CAFs by neutralizing antibodies significantly attenuated the tumor size, weights, and metastatic foci numbers of mice in vivo. Our finding has provided a novel therapeutic clue for OvCA based on TME.Subject terms: Cancer, Tumour biomarkers  相似文献   

3.
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.  相似文献   

4.
Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.  相似文献   

5.
The aim of this study was to investigate the regulatory mechanism of cancer-associated fibroblasts (CAFs) exosome in bladder cancer (BC) cell proliferation and invasion. CAFs and normal fibroblasts (NFs) were isolated from tumor tissues and adjacent normal tissues of BC patients, and examined by immunocytochemistry for the expression of fibroblast activation protein alpha (FAP) and α-smooth muscle actin (α-SMA). Exosomes were extracted from CAFs and NFs and observed under a transmission electron microscope, and expression of the exosome markers CD9 and CD63 was confirmed by western blotting. The distribution and intensity of fluorescence were observed by confocal laser microscopy to analyze exosomes uptake by BC cell lines T24 or 5367. BC cell proliferation and invasion were detected by MTT and Transwell assays, respectively. LINC00355 levels in CAFs, NFs, CAFs exosome, NFs exosome, and BC cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that CAFs exosome significantly promoted BC cell proliferation and invasion relative to NFs exosome. LINC00355 expression was significantly elevated in CAFs exosome when compared with that in NFs-exosome. Up-regulated LINC00355 expression was observed both in T24 and 5367 cells co-incubated with CAFs exosome. Exosomes derived from LINC00355 siRNA-transfected CAFs observably repressed BC cell proliferation and invasion when compared with control siRNA-CAFs exosome. In conclusion, CAFs exosome–mediated transfer of LINC00355 regulates BC cell proliferation and invasion. Significance of the study. In this study, our data suggest that the exosomes released from CAFs promote BC cell proliferation and invasion. The mechanism of this effect is, at least in part, related to the increased LINC00355. Regulation of LINC00355 expression in exosomes released from CAFs might be a putative therapeutic strategy against the pathogenesis of BC.  相似文献   

6.

Background

Tumor-stroma reaction is associated with activation of fibroblasts. Nemosis is a novel type of fibroblast activation. It leads to an increased production of growth factors and proinflammatory and proteolytic proteins, while at the same time cytoskeletal proteins are degraded. Here we used paired normal skin fibroblasts and cancer-associated fibroblasts (CAF) and primary and recurrent oral squamous cell carcinoma (SCC) cells to study the nemosis response.

Principal Findings

Fibroblast nemosis was analyzed by protein and gene expression and the paracrine regulation with colony formation assay. One of the normal fibroblast strains, FB-43, upregulated COX-2 in nemosis, but FB-74 cells did not. In contrast, CAF-74 spheroids expressed COX-2 but CAF-43 cells did not. Alpha-SMA protein was expressed in both CAF strains and in FB-74 cells, but not in FB-43 fibroblasts. Its mRNA levels were downregulated in nemosis, but the CAFs started to regain the expression. FSP1 mRNA was downregulated in normal fibroblasts and CAF-74 cells, but not in CAF-43 fibroblasts. Serine protease FAP was upregulated in all fibroblasts, more so in nemotic CAFs. VEGF, HGF/SF and FGF7 mRNA levels were upregulated to variable degree in nemosis. CAFs increased the colony formation of primary tumor cell lines UT-SCC-43A and UT-SCC-74A, but normal fibroblasts inhibited the anchorage-independent growth of recurrent UT-SCC-43B and UT-SCC-74B cells.

Conclusions

Nemosis response, as observed by COX-2 and growth factor induction, and expression of CAF markers α-SMA, FSP1 and FAP, varies between fibroblast populations. The expression of CAF markers differs between normal fibroblasts and CAFs in nemosis. These results emphasize the heterogeneity of fibroblasts and the evolving tumor-promoting properties of CAFs.  相似文献   

7.

Background

The extensional signals in cross-talk between stromal cells and tumor cells generated from extracellular matrix molecules, soluble factor, and cell-cell adhesion complexes cooperate at the extra- and intracellular level in the tumor microenvironment. CAFs are the primary type of stromal cells in the tumor microenvironment and play a pivotal role in tumorigenesis and development. Hitherto, there is hardly any systematic analysis of the intrinsic relationship between CAFs function and its abnormal signaling pathway. The extreme complexity of CAFs’ features and their role in tumor development are needed to be further investigated.

Methodology/Principal Findings

We primary cultured CAFs and NFs from early stages of breast cancer tissue and identified them using their biomarker by immunohistochemistry for Fibronectin, α-SMA and FAP. Microarray was applied to analyze gene expression profiles of human breast CAFs and the paired NFs. The Up-regulated genes classified by Gene Ontology, signal pathways enriched by DAVID pathway analysis. Abnormal signaling pathways in breast cancer CAFs are involved in cell cycle, cell adhesion, signal transduction and protein transport being reported in CAFs derived from other tumors. Significantly, the altered ATM signaling pathway, a set of cell cycle regulated signaling, and immune associated signaling are identified to be changed in CAFs.

Conclusions/Significance

CAFs have the vigorous ability of proliferation and potential of invasion and migration comparing with NFs. CAFs could promote breast cancer cell invasion under co-culture conditions through up-regulated CCL18 and CXCL12. Consistently with its biologic behavior, the gene expression profiling analyzed by microarray shows that some of key signaling pathways, such as cell cycle, cell adhesion, and secreting factors play an important role in CAFs. The altered ATM signaling pathway is abnormally active in the early stage of breast cancer. The set of immune associated signaling may be involved in tumor cell immune evasion.  相似文献   

8.
Cancer-associated fibroblasts (CAFs) are the most prominent cell type within the tumor stroma of many cancers, in particular breast carcinoma, and their prominent presence is often associated with poor prognosis1,2. CAFs are an activated subpopulation of stromal fibroblasts, many of which express the myofibroblast marker α-SMA3. CAFs originate from local tissue fibroblasts as well as from bone marrow-derived cells recruited into the developing tumor and adopt a CAF phenotype under the influence of the tumor microenvironment4. CAFs were shown to facilitate tumor initiation, growth and progression through signaling that promotes tumor cell proliferation, angiogenesis, and invasion5-8. We demonstrated that CAFs enhance tumor growth by mediating tumor-promoting inflammation, starting at the earliest pre-neoplastic stages9. Despite increasing evidence of the key role CAFs play in facilitating tumor growth, studying CAFs has been an on-going challenge due to the lack of CAF-specific markers and the vast heterogeneity of these cells, with many subtypes co-existing in the tumor microenvironment10. Moreover, studying fibroblasts in vitro is hindered by the fact that their gene expression profile is often altered in tissue culture11,12 . To address this problem and to allow unbiased gene expression profiling of fibroblasts from fresh mouse and human tissues, we developed a method based on previous protocols for Fluorescence-Activated Cell Sorting (FACS)13,14. Our approach relies on utilizing PDGFRα as a surface marker to isolate fibroblasts from fresh mouse and human tissue. PDGFRα is abundantly expressed by both normal fibroblasts and CAFs9,15 . This method allows isolation of pure populations of normal fibroblasts and CAFs, including, but not restricted to α-SMA+ activated myofibroblasts. Isolated fibroblasts can then be used for characterization and comparison of the evolution of gene expression that occurs in CAFs during tumorigenesis. Indeed, we and others reported expression profiling of fibroblasts isolated by cell sorting16. This protocol was successfully performed to isolate and profile highly enriched populations of fibroblasts from skin, mammary, pancreas and lung tissues. Moreover, our method also allows culturing of sorted cells, in order to perform functional experiments and to avoid contamination by tumor cells, which is often a big obstacle when trying to culture CAFs.  相似文献   

9.
H Wang  Q Wu  Z Liu  X Luo  Y Fan  Y Liu  Y Zhang  S Hua  Q Fu  M Zhao  Y Chen  W Fang  X Lv 《Cell death & disease》2014,5(4):e1155
It is largely recognized that fibroblast activation protein (FAP) is expressed in cancer-associated fibroblasts (CAFs) of many human carcinomas. Furthermore, FAP was recently also reported to be expressed in carcinoma cells of the breast, stomach, pancreatic ductal adenocarcinoma, colorectum, and uterine cervix. The carcinoma cell expression pattern of FAP has been described in several types of cancers, but the role of FAP in oral squamous cell carcinoma (OSCC) is unknown. The role of endogenous FAP in epithelium-derived tumors and molecular mechanisms has also not been reported. In this study, FAP was found to be expressed in carcinoma cells of OSCC and was upregulated in OSCC tissue samples compared with benign tissue samples using immunohistochemistry. In addition, its expression level was closely correlated with overall survival of patients with OSCC. Silencing FAP inhibited the growth and metastasis of OSCC cells in vitro and in vivo. Mechanistically, knockdown of FAP inactivated PTEN/PI3K/AKT and Ras-ERK and its downstream signaling regulating proliferation, migration, and invasion in OSCC cells, as the inhibitory effects of FAP on the proliferation and metastasis could be rescued by PTEN silencing. Our study suggests that FAP acts as an oncogene and may be a potential therapeutic target for patients with OSCC.  相似文献   

10.
BACKGROUND: Fibroblast activation protein (FAP) is a type II membrane protein expressed on tumor stroma fibroblasts in more than 90% of all carcinomas. FAP serves as a diagnostic marker and is potential therapeutic target for treatment of a wide variety of FAP+ carcinomas. Murine tumor stroma models and FAP-specific antibodies are required to investigate the functional role of FAP in tumor biology and its usefulness for drug targeting. We here describe the development of antibodies with crossreactivity for human (hFAP) and murine FAP (mFAP), which share 89% amino acid identity. MATERIAL AND METHODS: An FAP-/- mouse was sequentially immunized with recombinant murine and human FAP-CD8 fusion proteins. Immunoglobulin cDNA derived from hyperimmune spleen cells was used for the construction of a combinatorial single chain Fv (scFv) library. Phage display selection of FAP-specific scFv was performed on immobilized hFAP followed by selection on cells expressing murine FAP. RESULTS: High-affinity, species-crossreactive, FAP-specific scFv were isolated upon sequential phage display selection. A bivalent derivative (minibody M036) constructed thereof was applied for immunohistochemical analyses and allowed detection of FAP expression on stroma cells of different human carcinomas as well as on murine host stroma in a tumor xenograft model. CONCLUSIONS: MB M036, derived from phage display selected species crossreactive scFv, is suitable for tumor stroma targeting and will be a valuable tool in the analyses of the functional role of FAP in tumor biology as well as in the evaluation of the suitability of FAP for drug targeting.  相似文献   

11.
12.
严珺  杨芳  侯宗柳 《生命科学》2013,(11):1094-1099
肿瘤微环境对肿瘤的发生、发展具有重要的意义。选择性表达于肿瘤微环境重要组成部分——肿瘤相关成纤维细胞(carcinoma associated fibroblasts,CAFs)表面的成纤维细胞激活蛋白α(fibroblast activation protein-α,FAPα)广泛参与了肿瘤的生长、侵袭、转移以及肿瘤细胞外基质重建、血管生成、免疫逃逸等过程,从而促进了肿瘤的发展进程。FAPα具有蛋白水解酶活性,并作用于细胞信号通路,但FAPα在肿瘤微环境中发挥功能的具体分子机制还有待进一步研究。由于FAPα的表达具有肿瘤组织特异性,因此,以FAPα作为肿瘤基质标志物,对肿瘤进行病理诊断和免疫治疗将成为新兴的研究靶点。对FAPα的主要生物学性状进行概述,并综述了其对肿瘤细胞的生长、侵袭、转移以及肿瘤细胞外基质重建、血管生成、免疫逃逸等方面的重要影响。  相似文献   

13.
IntroductionPancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma and cancer-associated fibroblasts (CAFs) provide a favorable tumor microenvironment. Smad4 is known as tumor suppressor in several types of cancers including PDAC, and loss of Smad4 triggers accelerated cell invasiveness and metastatic potential. The thrombospondin-1 (TSP-1) can act as a major activator of latent transforming growth factor-β (TGF-β) in vivo. However, the roles of TSP-1 and the mediator of Smad4 loss and TGF-β signal activation during PDAC progression have not yet been addressed. The aim is to elucidate the biological role of TSP-1 in PDAC progression.Methods and resultsHigh substrate stiffness stimulated TSP-1 expression in CAFs, and TSP-1 knockdown inhibited cell proliferation with suppressed profibrogenic and activated stroma-related gene expressions in CAFs. Paracrine TSP-1 treatment for PDAC cells promoted cell proliferation and epithelial mesenchymal transition (EMT) with activated TGF-β signals such as phosphorylated Akt and Smad2/3 expressions. Surprisingly, knockdown of DPC4 (Smad4 gene) induced TSP-1 overexpression with TGF-β signal activation in PDAC cells. Interestingly, TSP-1 overexpression also induced downregulation of Smad4 expression and enhanced cell proliferation in vitro and in vivo. Treatment with LSKL peptide, which antagonizes TSP-1-mediated latent TGF-β activation, attenuated cell proliferation, migration and chemoresistance with enhanced apoptosis in PDAC cells.ConclusionsTSP-1 derived from CAFs stimulates loss of Smad4 expression in cancer cells and accelerates malignant behavior by TGF-β signal activation in PDAC. TSP-1 could be a novel therapeutic target, not only for CAFs in stiff stroma, but also for cancer cells in the PDAC microenvironment.  相似文献   

14.
A growing body of evidence suggests that components of the tumor microenvironment, including cancer-associated fibroblasts (CAF), may modulate the treatment sensitivity of tumor cells. Here, we investigated the possible influence of CAFs on the sensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines to cetuximab, an antagonistic epidermal growth factor receptor (EGFR) antibody. Cetuximab treatment caused a reduction in the proliferation rate of HNSCC cell lines, whereas the growth of HNSCC-derived CAF cultures was unaffected. When tumor cells were cocultured with CAFs in a transwell system, the cetuximab-induced growth inhibition was reduced, and a complete protection from growth inhibition was observed in one of the tumor cell lines investigated. Media that had been conditioned by CAFs offered protection from cetuximab treatment in a concentration-dependent manner, suggesting that the resistance to treatment was mediated by CAF-derived soluble factors. The coculture of HNSCC cell lines with CAFs resulted in an elevated expression of matrix metalloproteinase-1 (MMP-1) in both the tumor cells and CAFs. Moreover, the CAF-induced resistance was partly abolished by the presence of an MMP inhibitor. However, CAFs treated with siRNA targeting MMP-1 still protected tumor cells from cetuximab treatment, suggesting that several MMPs may cooperate to facilitate resistance or that the protective effect is mediated by another member of the MMP family. These results identify a novel CAF-dependent modulation of cetuximab sensitivity and suggest that inhibiting MMPs may improve the effects of EGFR-targeted therapy. Mol Cancer Res; 10(9); 1158-68. ?2012 AACR.  相似文献   

15.
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.  相似文献   

16.
Fibroblast activation protein (FAP) is a specific serine protease expressed in tumor stroma proven to be a stimulatory factor in the progression of some cancers. The purpose of this study was to investigate the effects of FAP knockdown on tumor growth and the tumor microenvironment. Mice bearing 4T1 subcutaneous tumors were treated with liposome-shRNA complexes targeting FAP. Tumor volumes and weights were monitored, and FAP, collagen, microvessel density (MVD), and apoptosis were measured. Our studies showed that shRNA targeting of FAP in murine breast cancer reduces FAP expression, inhibits tumor growth, promotes collagen accumulation (38%), and suppresses angiogenesis (71.7%), as well as promoting apoptosis (by threefold). We suggest that FAP plays a role in tumor growth and in altering the tumor microenvironment. Targeting FAP may therefore represent a supplementary therapy for breast cancer. [BMB Reports 2013; 46(5): 252-257]  相似文献   

17.
Interactions occurring between malignant cells and the stromal microenvironment heavily influence tumor progression. We investigated whether this cross-talk affects some molecular and functional aspects specifically correlated with the invasive phenotype of breast tumor cells (i.e. adhesion molecule expression, membrane fluidity, migration) by co-culturing mammary cancer cells exhibiting different degrees of metastatic potential (MDA-MB-231>MCF-7) with fibroblasts isolated from breast healthy skin (normal fibroblasts, NFs) or from breast tumor stroma (cancer-associated fibroblasts, CAFs) in 2D or 3D (nodules) cultures. Confocal immunofluorescence analysis of the epithelial adhesion molecule E-cadherin on frozen nodule sections demonstrated that NFs and CAFs, respectively, induced or inhibited its expression in MCF-7 cells. An increase in the mesenchymal adhesion protein N-cadherin was observed in CAFs, but not in NFs, as a result of the interaction with both kinds of cancer cells. CAFs, in turn, promoted N-cadherin up-regulation in MDA-MB-231 cells and its de novo expression in MCF-7 cells. Beyond promotion of “cadherin switching”, another sign of the CAF-triggered epithelial-mesenchymal transition (EMT) was the induction of vimentin expression in MCF-7 cells. Plasma membrane labeling of monolayer cultures with the fluorescent probe Laurdan showed an enhancement of the membrane fluidity in cancer cells co-cultured with NFs or CAFs. An increase in lipid packing density of fibroblast membranes was promoted by MCF-7 cells. Time-lapsed cell tracking analysis of mammary cancer cells co-cultured with NFs or CAFs revealed an enhancement of tumor cell migration velocity, even with a marked increase in the directness induced by CAFs.Our results demonstrate a reciprocal influence of mammary cancer and fibroblasts on various adhesiveness/invasiveness features. Notably, CAFs'' ability to promote EMT, reduction of cell adhesion, increase in membrane fluidity, and migration velocity and directness in mammary cancer cells can be viewed as an overall progression- and invasion-promoting effect.  相似文献   

18.
Proteolytic degradation of extracellular matrix (ECM) components during tissue remodeling plays a pivotal role in normal and pathological processes including wound healing, inflammation, tumor invasion, and metastasis. Proteolytic enzymes in tumors may activate or release growth factors from the ECM or act directly on the ECM itself, thereby facilitating angiogenesis or tumor cell migration. Fibroblast activation protein (FAP) is a cell surface antigen of reactive tumor stromal fibroblasts found in epithelial cancers and in granulation tissue during wound healing. It is absent from most normal adult human tissues. FAP is conserved throughout chordate evolution, with homologues in mouse and Xenopus laevis, whose expression correlates with tissue remodeling events. Using recombinant and purified natural FAP, we show that FAP has both dipeptidyl peptidase activity and a collagenolytic activity capable of degrading gelatin and type I collagen; by sequence, FAP belongs to the serine protease family rather than the matrix metalloprotease family. Mutation of the putative catalytic serine residue of FAP to alanine abolishes both enzymatic activities. Consistent with its in vivo expression pattern determined by immunohistochemistry, FAP enzyme activity was detected by an immunocapture assay in human cancerous tissues but not in matched normal tissues. This study demonstrates that FAP is present as an active cell surface-bound collagenase in epithelial tumor stroma and opens up investigation into physiological substrates of its novel, tumor-associated dipeptidyl peptidase activity.  相似文献   

19.
CAFs (cancer-associated fibroblasts), the most abundant cell type in breast cancer stroma, produce a plethora of chemokines, growth factors and ECM (extracellular matrix) proteins, that may contribute to dissemination and metastasis. Axillary nodes are the first metastatic site in breast cancer; however, to the present date, there is no consensus of which specific proteins, synthesized by CAFs, might be related with lymph node involvement. The purpose of this study was to perform a systematic review of CAF biomarkers associated with the presence of regional metastasis. PubMed was searched using the words: ‘breast cancer’ and ‘lymph node’ and fibroblast or stroma or microenvironment. After exclusions, eight studies evaluating biomarkers immunoexpression in CAFs and lymph node status were selected. Biomarkers evaluated in these studies may be divided in two groups, according to their ontology: extracellular matrix components [MMP13 (matrix metalloproteinase 13), TIMP2 (tissue inhibitor of metalloproteinases-2), THBS1 (thrombospondin 1), LGALS1 (lectin, galactoside-binding, soluble, 1)] and response to wounding [PDPN (podoplanin), PLAU (plasminogen activator, urokinase), PLAUR (plasminogen activator, urokinase receptor), CAV1 (caveolin 1), THBS1, LGALS1]. A positive expression of MMP13 and LGALS1 in CAFs was associated with enhanced OR (odds ratio) for regional metastasis. Contrariwise, CAV1 positive staining of fibroblasts was associated with decreased OR for nodal involvement. Expression of MMP13, PDPN and CAV1 was further tested in a new series of 65 samples of invasive ductal breast carcinomas by immunohistochemistry and no association between biomarkers expression in CAFs and nodal status was found. It was suggested that breast cancer subtypes may differentially affect CAFs behaviour. It would be interesting to evaluate the prognostic significance of these biomarkers in CAFs from different tumour types.  相似文献   

20.
Pancreatic-cancer-patient tumor specimens were initially established subcutaneously in NOD/SCID mice immediately after surgery. The patient tumors were then harvested from NOD/SCID mice and passaged orthotopically in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). The primary patient tumors acquired RFP-expressing stroma. The RFP-expressing stroma included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Further passage to transgenic nude mice ubiquitously expressing green fluorescent protein (GFP) resulted in tumors that acquired GFP stroma in addition to their RFP stroma, including CAFs and TAMs as well as blood vessels. The RFP stroma persisted in the tumors growing in the GFP mice. Further passage to transgenic nude mice ubiquitously expressing cyan fluorescent protein (CFP) resulted in tumors acquiring CFP stroma in addition to persisting RFP and GFP stroma, including RFP- and GFP-expressing CAFs, TAMs and blood vessels. This model can be used to image progression of patient pancreatic tumors and to visually target stroma as well as cancer cells and to individualize patient therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号