首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S100A4 (Mts1) is a Ca(2+)-binding protein of the S100 family. This protein plays an important role in promoting tumor metastasis. In order to identify S100A4 interacting proteins, we have applied the yeast two-hybrid system as an in vivo approach. By screening a mouse mammary adenocarcinoma library, we have demonstrated that S100A4 forms a heterocomplex with S100A1, another member of the S100 family. The non-covalent heterodimerization was confirmed by fluorescence spectroscopy and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mutational analysis revealed that replacement of Cys(76) and/or Cys(81) of S100A4 by Ser abolishes the S100A4/S100A1 heterodimerization, but does not affect the S100A4 homodimerization in vivo.  相似文献   

2.
3.
4.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

5.
6.
7.
Causal implication of S100A4 in inducing metastases was convincingly shown previously. However, the mechanisms that associate S100A4 with tumor progression are not well understood. S100A4 protein, as a typical member of the S100 family, exhibits dual, intracellular and extracellular, functions. This work is focused on the extracellular function of S100A4, in particular its involvement in tumor-stroma interplay in VMR (mouse adenocarcinoma cell line) tumor cells, which exhibit stroma-dependent metastatic phenotype. We demonstrated the reciprocal influence of tumor and stroma cells where tumor cells stimulate S100A4 secretion from fibroblasts in culture. In turn, extracellular S100A4 modifies the cytoskeleton and focal adhesions and triggers several other events in tumor cells. We found stabilization of the tumor suppressor protein p53 and modulation of its function. In particular, extracellular S100A4 down-regulates the pro-apoptotic bax and the angiogenesis inhibitor thrombospondin-1 genes. For the first time, we demonstrate here that the S100A4 protein added to the extracellular space strongly stimulates proteolytic activity of VMR cells. This activity most probably is associated with matrix metalloproteinases and, in particular, with matrix metalloproteinase-13. Finally, the application of the recombinant S100A4 protein confers stroma-independent metastatic phenotype on VMR tumor cells. In conclusion, our results indicate that metastasis-inducing S100A4 protein plays a pivotal role in the tumor-stroma environment. S100A4 released either by tumor or stroma cells triggers pro-metastatic cascades in tumor cells.  相似文献   

8.
9.
The S100 calcium-binding proteins are implicated in signal transduction, motility, and cytoskeletal dynamics. The three-dimensional structure of several S100 proteins revealed that the proteins form non-covalent dimers. However, the mechanism of the S100 dimerization is still obscure. In this study we characterized the dimerization of S100A4 (also named Mts1) in vitro and in vivo. Analytical ultracentrifugation revealed that apoS100A4 was present in solution as a mixture of monomers and dimers in a rapidly reversible equilibrium (K(d) = 4 +/- 2 microm). The binding of calcium promoted dimerization. Replacement of Tyr-75 by Phe resulted in the stabilization of the dimer. Helix IV is known to form the major part of the dimerization interface in homologous S100 proteins. By using the yeast two-hybrid system we showed that only a few residues of helix IV, namely Phe-72, Tyr-75, Phe-78, and Leu-79, are essential for dimerization in vivo. A homology model demonstrated that these residues form a hydrophobic cluster on helix IV. Their role is to stabilize the structure of individual subunits rather than provide specific interactions across the dimerization surface. Our mutation data showed that the specificity at the dimerization surface is not particularly stringent, which is consistent with recent data indicating that S100 proteins can form heterodimers.  相似文献   

10.
Neuronal differentiation and axonal growth are controlled by a variety of factors including neurotrophic factors, extracellular matrix components, and cell adhesion molecules. Here we describe a novel and very efficient neuritogenic factor, the metastasis-related Mts1 protein, belonging to the S100 protein family. The oligomeric but not the dimeric form of Mts1 strongly induces differentiation of cultured hippocampal neurons. A mutant with a single Y75F amino acid substitution, which stabilizes the dimeric form of Mts1, is unable to promote neurite extension. Disulfide bonds do not play an essential role in the Mts1 neuritogenic activity. Mts1-stimulated neurite outgrowth involves activation of phospholipase C and protein kinase C, depends on the intracellular level of Ca(2+), and requires activation of the extracellular signal-regulated kinases (ERKs) 1 and 2.  相似文献   

11.
We consider the novel means of attack and defense in the host versus cancer combat that involve interactions between widespread multifunctional proteins, focusing on the aspects that may seem paradoxical in the framework of established notions. Particularly, we show that a protein broadly known for its protective functions such as Hsp70 can make a tumoricidal “binary weapon” with another nontoxic protein Tag7 (PGRP-S); that the same Hsp70, a ubiquitous intracellular chaperone, when expressed on the MHC-negative tumor cell surface, can itself be the hallmark of immune evasion rather than a primordial MHC substitute; that a device functionally equivalent to the T-cell receptor (Tag7-Centered Recognizer) can be assembled of components in no way related to the classical pathways of T-cell-mediated immunity, and operate where the orthodox immunosurveillance fails; and that one and the same protein Mts1 (S100A4) under different circumstances may work as “reactive armor” of a tumor cell against humoral agents and as a vital part of the T-cell machinery aimed against immunoevasive cells, i.e., perform both prometastatic and antimetastatic functions.  相似文献   

12.
A role for EF-hand calcium-binding protein Mts1 (S100A4) in the phosphorylation and the assembly of myosin filaments was studied. The nonmuscle myosin molecules form bipolar filaments, which interact with actin filaments to produce a contractile force. Phosphorylation of the myosin plays a regulatory role in the myosin assembly. In the presence of calcium, Mts1 binds at the C-terminal end of the myosin heavy chain close to the site of phosphorylation by protein kinase CK2 (Ser1944). In the present study, we have shown that interaction of Mts1 with the human platelet myosin or C-terminal fragment of the myosin heavy chain inhibits phosphorylation of the myosin heavy chain by protein kinase CK2 in vitro. Mts1 might also bind directly the beta subunit of protein kinase CK2, thereby modifying the enzyme activity. Our results indicate that myosin oligomers were disassembled in the presence of Mts1. The short C-terminal fragment of the myosin heavy chain was totally soluble in the presence of an equimolar amount of Mts1 at low ionic conditions (50 mM NaCl). Depolymerization was found to be calcium-dependent and could be blocked by EGTA. Our data suggest that Mts1 can increase myosin solubility and therefore suppress its assembly.  相似文献   

13.
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.  相似文献   

14.
15.
To date vast evidence has been accumulated showing the role of protein MTS1 in the metastasis development and cell motility regulation, both in norm and upon pathological change of various tissues. The structure of the protein and its gene, as well as the regulation of the gene expression, are studied in detail. Significant advances have been achieved in understanding molecular mechanisms involving MTS1. This paper reviews the current knowledge of the issue.  相似文献   

16.
To date vast evidence has been accumulated showing the role of protein MTS1 in the metastasis development and cell motility regulation, both in norm and upon pathological change of various tissues. The structure of the protein and its gene, as well as the regulation of the gene expression, are studied in detail. Significant advances have been achieved in understanding molecular mechanisms involving MTS1. This paper reviews the current knowledge of the issue.  相似文献   

17.
An overview of the present knowledge about succinate:quinone oxidoreductase in Paracoccus denitrificans and Bacillus subtilis is presented. P. denitrificans contains a monoheme succinate:ubiquinone oxidoreductase that is similar to that of mammalian mitochondria with respect to composition and sensitivity to carboxin. Results obtained with carboxin-resistant P. denitrificans mutants provide information about quinone-binding sites on the enzyme and the molecular basis for the resistance. B. subtilis contains a diheme succinate:menaquinone oxidoreductase whose activity is dependent on the electrochemical gradient across the cytoplasmic membrane. Data from studies of mutant variants of the B. subtilis enzyme combined with available crystal structures of a similar enzyme, Wolinella succinogenes fumarate reductase, substantiate a proposed explanation for the mechanism of coupling between quinone reductase activity and transmembrane potential.  相似文献   

18.
The calcium-binding protein S100A4 (p9Ka) has been shown to cause a metastatic phenotype in rodent mammary tumor cells and in transgenic mouse model systems. mRNA for S100A4 (p9Ka) is present at a generally higher level in breast carcinoma than in benign breast tumor specimens, and the presence of immunocytochemically detected S100A4 correlates strongly with a poor prognosis for breast cancer patients. Recombinant S100A4 (p9Ka) has been reported to interact in vitro with cytoskeletal components and to form oligomers, particularly homodimers in vitro. Using the yeast two-hybrid system, a strong interaction between S100A4 (p9Ka) and another S100 protein, S100A1, was detected. Site-directed mutagenesis of conserved amino acid residues involved in the dimerization of S100 proteins abolished the interactions. The interaction between S100A4 and S100A1 was also observed in vitro using affinity column chromatography and gel overlay techniques. Both S100A1 and S100A4 can occur in the same cultured mammary cells, suggesting that in cells containing both proteins, S100A1 might modulate the metastasis-inducing capability of S100A4.  相似文献   

19.
20.
Metastasis-associated protein S100A4 (Mts1) induces invasiveness of primary tumors and promotes metastasis. S100A4 belongs to the family of small calcium-binding S100 proteins that are involved in different cellular processes as transducers of calcium signal. S100A4 modulates properties of tumor cells via interaction with its intracellular targets, heavy chain of non-muscle myosin and p53. Here we report identification of a new molecular target of the S100A4 protein, liprin beta1. Liprin beta1 belongs to the family of leukocyte common antigen-related (LAR) transmembrane tyrosine phosphatase-interacting proteins that may regulate LAR protein properties via interaction with another member of the family, liprin alpha1. We showed by the immunoprecipitation analysis that S100A4 interacts specifically with liprin beta1 in vivo. Immunofluorescence staining demonstrated the co-localization of S100A4 and liprin beta1 in the cytoplasm and particularly at the protrusion sites of the plasma membrane. We mapped the S100A4 binding site at the C terminus of the liprin beta1 molecule between amino acid residues 938 and 1005. The S100A4-binding region contains two putative phosphorylation sites by protein kinase C and protein kinase CK2. S100A4-liprin beta1 interaction resulted in the inhibition of liprin beta1 phosphorylation by both kinases in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号