首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carotenoidless light-harvesting complexes (DPA-complexes) LH1-RC and LH2 were isolated from the purple sulfur bacterium Ectothiorhodospira haloalkaliphila in which carotenoid biosynthesis was suppressed with diphenylamine (DPA). Carotenoids of the spirilloxanthine series, which were isolated from the same bacterium, were incorporated into the DPA-complexes in vitro with an efficiency of 95–100%. The comparison of characteristics of the complexes with the incorporated carotenoids and the control complexes showed that the LH2 complexes with the incorporated carotenoids restored their absorption spectra, circular dichroism signals, and energy transfer from carotenoids to bacteriochlorophyll, which indicates that carotenoids were correctly incorporated into the structure of this complex.  相似文献   

2.
Effect of illumination intensity and inhibition of carotenoid biosynthesis on assemblage of different spectral types of LH2 complexes in a purple sulfur bacterium Allochromatium (Alc.) vinosum ATCC 17899 was studied. Under illumination of 1200 and 500 lx, the complexes B800-850 and B800-840 and B800-820 were assembled. While rhodopine was the major carotenoid in all spectral types of the LH2 complex, a certain increase in the content of carotenoids with higher numbers of conjugated double bonds (anhydrorhodovibrin and didehydrorhodopin) was observed in the B800-820 complex. At 1200 lx, the cells grew slowly at diphenylamine (DPA) concentrations not exceeding 53 μM, while at illumination intensity decreased to 500 lx they could grow at 71 μM DPA (DPA cells). Independent on illumination level, the inhibitor is supposed to impair the functioning of phytoene synthetase (resulting in a decrease in the total carotenoid content) and of phytoene desaturase, which results in formation of neurosporene hydroxy derivatives and ζ-carotene. In the cells grown at 500 lx, small amounts of spheroidene and OH-spheroidene were detected. These carotenoids were originally found under conditions of carotenoid synthesis inhibition in bacteria with spirilloxanthin as the major carotenoid. Carotenoid content in the LH2 complexes isolated from the DPA cells was ~15% of the control (without inhibition) for the B800-850 and ~20% of the control for the B800-820 and B800-840 DPA complexes. Compared to the DPA pigment-containing membranes, the DPA complexes were enriched with carotenoids due to disintegration of some carotenoidless complexes in the course of isolation. These results support the supposition that some of the B800-820, B800-840, and B800-850 complexes may be assembled in the cells of Alc. vinosum ATCC 17899 without carotenoids. Comparison of the characteristics obtained for Alc. vinosum ATCC 17899 and the literature data on strain D of the same bacteria shows that they belong to two different strains, rather than to one as was previously supposed.  相似文献   

3.
Seven different carotenoids with the number of conjugated double bonds (N) from 5 to 11 were incorporated in vitro into carotenoidless complexes LH2 of the sulfur bacterium Allochromatium vinosum strain MSU. The efficiency of their incorporation varied from 4 to 99%. The influence of N in the carotenoid molecules on the energy transfer efficiency from these pigments to bacteriochlorophyll (BChl) in the modified LH2 complexes was studied for the first time. The highest level of energy transfer was recorded for rhodopin (N = 11) and neurosporene (N = 7) (37 and 51%, respectively). In the other carotenoids, this parameter ranged from 11 to 33%. In the LH2 complexes studied, we found no direct correlation between the decrease in N in carotenoids and increase in the energy transfer efficiency from these pigments to BChl.  相似文献   

4.
Incorporation of spirilloxanthin into carotenoidless LH2 and LH1-RC complexes from a purple sulfur bacterium Allochromatium (Alc.) minutissimum was studied. Carotenoidless cells of Alc. minutissimum were obtained using diphenylamine, a carotenoid biosynthesis inhibitor. In the course of incorporation of the carotenoid mixture, the composition of which corresponded to that of Alc. minutissimum control photosynthetic membranes, no selective incorporation of spirilloxanthin into the LH1-RC complex was detected. It is assumed that in vivo carotenoids are not incorporated into the LH2 and LH1-RC complexes from a common pool. Pure spirilloxanthin destroys both the LH2 and LH1-RC complexes. Within the concentration range of spirilloxanthin in the incorporated mixture from 27% to 52%, it was found to be incorporated into the LH2 and LH1-RC complexes with the efficiency of 13% and 33%, respectively. The possible existence of different sites of assembly for the LH2 and LH1-RC complexes is discussed, as well as of two fractions of LH2 complexes, in one of which rhodopin may be integrated, and in the other (minor) one, spirilloxanthin.  相似文献   

5.
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, “blue” form with an S2 (11B u + ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, “red” form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u + ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u + ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u + ) → S0 (11A g ? ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid–protein interactions, including the inferred hydrogen bonding.  相似文献   

6.
Carotenoid-binding properties of Na+-translocating rhodopsin (NaR) from Dokdonia sp. PRO95 were studied. Carotenoids were extracted from Dokdonia sp. PRO95 cells. It was found that zeaxanthin is the predominant carotenoid of this bacterium. Incubation of recombinant NaR purified from Escherichia coli cells with carotenoids from Dokdonia sp. PRO95 did not result in any changes in optical absorption or circular dichroism spectra, indicating the absence of binding of the carotenoids by NaR. The same results were obtained using salinixanthin as the carotenoid. These data along with genome analysis of Dokdonia sp. PRO95 and other flavobacteria indicate that NaR from Dokdonia sp. PRO95 and possibly the other flavobacterial Na+-translocating rhodopsins do not contain a carotenoid antenna.  相似文献   

7.
Carotenoid mixture enriched by rhodopin and spirilloxanthin was incorporated in LH2 and LH1 complexes from Allochromatium (Alc.) minutissimum in vitro. The maximum incorporating level was ~95%. Rhodopin (56.4%) and spirilloxanthin (13.8%) were incorporated into the LH1 complex, in contrast to the control complex, which contained primarily spirilloxanthin (66.8%). After incorporating, the LH2 complex contained rhodopin (66.7%) and didehydrorhodopin (14.6%), which was close to their content in the control (67.4 and 20.5%, respectively). Thus, it was shown that carotenoids from the total pool are not selectively incorporated into LH2 and LH1 complexes in vitro in the proportion corresponding to the carotenoid content in the complexes in vivo.  相似文献   

8.
RC–LH1–PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC–LH1–PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2–Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC–LH1–PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC–LH1–PufX, we propose that the carotenoid-binding site in RC–LH1–PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.  相似文献   

9.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

10.
Rhodotorula mucilaginosa has been considered as a potential industrial yeast due to its unicellular and fast-growing characteristics, and its ability to produce carotenoids, including torularhodin. However, its low total carotenoid production limits its commercial application. In this study, mutation breeding and metabolic engineering were employed to enhance carotenoid production in the R. mucilaginosa strain KC8. After chemical–physical mutagenesis, R. mucilaginosa K4 with a 67% greater concentration of carotenoids (14.47 ± 0.06 mg L?1) than R. mucilaginosa KC8 (8.67 ± 0.07 mg L?1) was obtained. To further enhance carotenoid production, gene HMG1 encoding the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was introduced from another yeast, Saccharomyces cerevisiae, and overexpressed in R. mucilaginosa K4. The carotenoid production of HMG1-gene-overexpression transformant G1 reached 16.98 mg L?1. To relieve the feedback inhibition of ergosterol, and to down-regulate ergosterol synthesis, ketoconazole, an ergosterol synthesis inhibitor, was added at a concentration of 28 mg L?1. The carotenoid production of the transformant G1 reached 19.14 ± 0.09 mg L?1, which was 121% higher than in R. mucilaginosa KC8. This suggests that a combination of chemical–physical mutagenesis, overexpression of the HMG1 gene, and adding ketoconazole is an effective strategy to improve carotenoid production.  相似文献   

11.
Cassava is a widely grown staple in Sub-Saharan Africa and consumed as a cheap source of calories, but the crop is deficient in micronutrients including pro-vitamin A carotenoids. This challenge is currently being addressed through biofortification breeding that relies on phenotypic selection. Gene-based markers linked to pro-vitamin A content variation are expected to increase the rate of genetic gain for this critical trait. We sequenced four candidate carotenoid genes from 167 cassava accessions representing the diversity of elite breeder lines from IITA. Total carotenoid content was determined using spectrophotometer and total β-carotene was quantified by high-performance liquid chromatography. Storage root yellowness due to carotenoid pigmentation was assessed. We carried out candidate gene association analysis that accounts for population structure and kinship using genome-wide single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing. Significant SNPs were used to design competitive allele-specific PCR assays and validated on the larger population for potential use in marker-assisted selection breeding. Candidate gene sequencing of the genes β-carotene hydroxylase (crtRB), phytoene synthase (PSY2), lycopene epsilon cyclase (lcyE), and lycopene beta cyclase (lcyB) yielded a total of 37 SNPs. Total carotenoid content, total β-carotene, and color parameters were significantly associated with markers in the PSY2 gene. The SNPs from lcyE were significantly associated with color while those of lcyB and crtRB were not significantly associated with carotenoids or color parameters. These validated and breeder-friendly markers have potential to enhance the efficiency of selection for high β-carotene cassava, thus accelerating genetic gain.  相似文献   

12.
Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.  相似文献   

13.
Zeaxanthin is an essential nutrient for prevention of macular degeneration. However, it is limited in our diet. For the production of zeaxanthin, we have engineered zeaxanthin synthesis into a carotenoid mutant of Xanthophyllomyces dendrorhous which is blocked in astaxanthin synthesis and accumulates β-carotene instead. Two strategies were followed to reach high-yield zeaxanthin synthesis. Total carotenoid synthesis was increased by over-expression of genes HMGR, crtE, and crtYB encoding for limiting enzymes in the pathway leading to and into carotenoid biosynthesis. Then bacterial genes crtZ were used to extend the pathway from β-carotene to zeaxanthin in this mutant. The increase of total carotenoids and the formation of zeaxanthin is dependent on the number of gene copies of crtYB and crtZ integrated into the X. dendrorhous upon transformation. The highest zeaxanthin content around 500 μg/g dw was reached by shaking flask cultures after codon optimization of crtZ for Xanthophyllomyces. Stabilization of carotenoid and zeaxanthin formation in the final transformant in the absence of selection agents was achieved after passing through a sexual cycle and germination of basidiospores. The values for the transformant before and after stabilization were very similar resembling about 70 % of total carotenoids and corresponding to a conversion rate of 80 % for hydroxylation of β-carotene to zeaxanthin. The stabilized transformant allowed experimental small-scale fermentation yielding X. dendrorhous cells with a zeaxanthin content similar to the shaking flask cultures. Our result demonstrates the potential of X. dendrorhous for its development as a zeaxanthin producer and its suitability for large-scale fermentation.  相似文献   

14.
A total of six carotenoids, viz., β-carotene, pectenol A, pectenolone (trans- and cis-isomers), zeaxanthin, diatoxanthin, and alloxanthin, as well as esters of alloand diatoxanthin, have been detected in total carotenoid extracts from the tissues of the bivalve Anadara kagoshimensis (Tokunaga, 1906) using the methods of thin-layer chromatography, high-performance liquid chromatography, mass spectrometry, UV-VIS spectroscopy, and characteristic reactions for the identification of chemical groups. The major group (over 90% of the total carotenoids) is comprised of alloxanthin, pectenolone, and allo- and diatoxanthin esters. Tissues of A. kagoshimensis are typically characterized by cyclic variations in the level of carotenoids over the period from winter to summer, with the maxima in February and June and the minimum in April. The largest contribution to the seasonal carotenoid dynamics is made by the major group of pigments (R 2 = 0.75–0.99), which depends on the pattern of succession of diatomic microalgae during the annual cycle. The pathways of metabolic transformation of the carotenoids in tissues of this bivalve are discussed.  相似文献   

15.
Two strains of pink-colored aerobic bacteriochlorophyll a-containing bacteria were isolated from aerobic (strain ROS 10) and anaerobic (strain ROS 35) zones of the water column of Mono Lake (California, United States). Cells of the bacteria were nonmotile oval gram-negative rods multiplying by binary fission by means of a constriction. No intracellular membranes were detected. Polyphosphates and poly-β-hydroxybutyric acid were the storage compounds. Pigments were represented by bacteriochlorophyll a and carotenoids of the spheroidene series. The strains were obligately aerobic, mesophilic (temperature optimum of 25–30°C), alkaliphilic (pH optimum of 8.5–9.5), and moderately halophilic (optimal NaCl concentration of 40 g/l). They were obligately heterotrophic and grew aerobically in the dark and in the light. Respiration was inhibited by light at wavelengths corresponding to the absorption of the cellular pigments. The substrate utilization spectra were strain-specific. In the course of organotrophic growth, the bacteria could oxidize thiosulfate to sulfate; sulfide and polysulfide could also be oxidized. The DNA G+C content was 59.4 mol % in strain ROS 10 and 59 mol % in strain ROS 35. In their phenotypic properties, the new strains were close but not identical to the alkaliphilic bacterium Roseinatronobacter thiooxidans. The distinctions in the nucleotide sequences of the 16S rRNA genes (2%) and low DNA-DNA hybridization level with Rna. thiooxidans (22–25%) allow the new strains to be assigned to a new species of the genus Roseinatronobacter, Roseinatronobacter monicus sp. nov. with the type strain ROS 35T (=UNIQEM U-251T = VKM B-2404T).  相似文献   

16.
The effect of light with different spectral composition: white, red and blue-green (the first one is absorbed by all the pigments of the cell, and the second and the third ones are absorbed by bacteriochlorophyll and carotenoids, respectively) on culture growth, carotenoid synthesis, and assembly of the light-harvesting complexes was studied for the purple sulfur bacteria Allochromatium (Alc.) minutissimum MSU and Alc. vinosum ATCC 17899. The working hypothesis on the growth of bacteria under blue-green illumination (absorbed by carotenoids) resulting in the inhibition of cell growth was tested. When equalizing the light by luxes, the intensity of illumination for each luminous flux was 1800 lx (white and red light, 4 W/m2; bluegreen light, 0.4 W/m2). The growth of the cells was recorded in white and red light, while in blue-green light an insignificant increase was observed only for Alc. vinosum at the end of the experiment (7–9 days). Regardless of the spectral composition of the light the B800-850 type LH2 complex was always assembled in Alc. minutissimum membranes, and two short-wave LH2 complexes of В800-820 and В800-840 type were assembled in the membranes of Alc. vinosum. Upon smoothing and increasing the luminous flux up to 6 W/m2 for every illumination mode, both cultures grew with approximately equal rates in blue-green light. In the membranes of Alc. minutissimum and Alc. vinosum the same types of LH2 complexes were assembled as in the case of 1800 lx illumination. It was found that blue-green light did not inhibit cell growth. At illumination of the cells collected at the end of the experiment with blue-green light for 6 h, no photooxidation of BChl850 was registered. However, in the membranes from the cells oxygen-saturated at isolation, ~50% of BChl850 was oxidized after 30 minutes of illumination. In the course of cell growth, oxygen is probably completely consumed and anaerobic conditions develop inside the cell. Under these conditions, formation of reactive oxygen species, BChl photooxidation and inhibition of the cell growth become impossible.  相似文献   

17.
Variation of the distribution of bacteriochlorophyll a (BChl a) between external antenna (LH2) and core complexes (LH1 + RC) of the photosynthetic membrane of the sulfur bacterium Allochromatium minutissimum was studied at light intensities of 5 and 90 Wt/m2 in the temperature range of 12–43°C. The increase of light intensity was shown to result in a 1.5-to 2-times increase of a photosynthetic unit (PSU). PSU sizes pass through a maximum depending on growth temperature, and the increase of light intensity (5 and 90 Wt/m2) results in a shift of the maximal PSU size to higher temperatures (15 and 20°C, respectively). In the narrow temperature interval of ~14–17°C, the ratio of light intensity to PSU size is typical of phototrophs: lower light intensity corresponds to larger PSU size. The pattern of PSU size change depending on light intensity was shown to differ at extreme growth temperatures (12°C and over 35°C). The comparison of Alc. minutissimum PSU size with the data on Rhodobacter capsulatus and Rhodopseudomonas palustris by measuring the effective optical absorption cross-section for the reaction of photoinhibition of respiration shows a two to four times greater size of light-harvesting antenna for Alc. minutissimum, which seems to correspond to the maximum possible limit for purple bacteria.  相似文献   

18.
Intact cells of freshwater algae Cladophora aegagropila (L). Rabenh. (synonymous to Aegagropila linnaei Kutz.) were investigated by resonance Raman spectroscopy. It was found that incubation in the dark (up to 24 h) leads to changes in the Raman spectroscopy spectrum of this species, namely to changes in the ratio of amplitudes of the I1523/I1155 and I960/I1004 bands and in the half width of band in the region of 1523 cm–1. We suggested that the adaptation of algae to the dark alters the conformation of the molecule of the carotenoid by delocalization of π-electrons in the polyene chain of the molecule and changes the orientation of the ring. Moreover, the composition of carotenoids, as well as their location in the cell and microenvironment in the pigment–protein complexes can change: in the absence of illumination, the distribution of carotenoids in algal cells is more uniform. These changes are probably caused either by changes in the location of cell organelles or by carotenoid redistribution between photosynthetic membranes, plastoglobules, and lipophilic formations in the cytoplasm.  相似文献   

19.
Change of carotenoid composition in crabs during embryogenesis   总被引:1,自引:0,他引:1  
Changes of the qualitative and quantitative compositions of carotenoids are studied at various development stages of the external hard roe, determined based on color differences, for the species C. opilio, P. camtschaticus, and P. platypus. It has been revealed that the major carotenoids of the new egg are astaxanthin and β-carotene. Intermediate products of transformation of β-carotene into astaxanthin are identified: echinenone, canthaxanthine, and phenicoxanthine. The carotenoid content per embryo for the new hard roe of C. opilio (the orange egg) amounted to 22.7 ng, of P. camtschaticus and P. platypus (the violet egg)—to 49.2 and 23.3 ng, respectively. In the hard roe at the later development stage (the brown egg) the carotenoid content was decreased to 13.1 ng in C. opilio and to 20.1 ng in P. camtschaticus. Development of embryos is accompanied by accumulation of esterified carotenoids and a decrease of β-carotene and astaxanthine concentrations in all studied species.  相似文献   

20.
The correlation of the state of glutathione complex composed of reduced glutathione (GSH), glutathione reductase (GR) activity and glutathione peroxidase (GP) and the qualitative composition of carotenoids was investigated in the bivalve mollusk Anadara kagoshimensis (Tokunaga, 1906). Using high-performance liquid chromatography, UV-Vis and mass spectra, 7 types of carotenoids (trans- and cis-pectenolon, alloxanthine, pectenol A, β-carotene, zeaxanthin and diatoxanthin) were identified in tissues of this species and their quantitative ratio was determined. A positive correlation (R 2 > 0.9) was established between GSH and most carotenoid levels. A negative correlation was found for the GR–carotenoids (R 2 > 0.75) and GP–pectenol A (R 2 > 0.988) systems. The cause-and-effect relations of these regularities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号