首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP pool in Escherichia coli is a magnetic-dependent characteristic of microorganism vital activity. It depends on the values of the external static magnetic field and the existence of magnetic moment of magnesium isotopes nuclei added to the growth nutrient medium. The combined effects of the magnetic field 70–95 mT and magnesium magnetic isotope 25Mg on E. coli bacteria leads to increase intracellular concentration of ATP. Magnetic-field effects in the range of 0.8–16 mT, registered for all bacteria regardless of the magnesium-isotopic enrichment of nutrient medium, evidence about the sensitivity of intracellular processes to weak magnetic fields.  相似文献   

2.
The combined effects of external low static magnetic fields at 0–22 mT and magnesium isotopes on the growth and development of E. coli bacteria has been studied. The magnetic field and 25Mg magnetic isotope effects were obtained in two ranges: 0.8–3.0 and 8–13 mT. The experimental values of the growth rate, the number of CFUs and the ATP pool of bacteria enriched in magnetic magnesium isotope 25Mg (nuclear spin, I = 5/2) in the range of 0.8–3.0 mT are significantly higher compared to bacteria enriched in nonmagnetic isotopes 24Mg, 26Mg, or natural magnesium. The increase in the growth rate, colony-forming ability, and intracellular ATP concentration in bacteria in all groups cultivated under exposure to an external static magnetic field in the range of 0.8 to 3.0 mT confirms the existence of magnetosensitive stages of enzymatic reactions that proceed via the ion-radical mechanism. The combined influence of the magnetic field in the range of 8 to 13 mT and the magnesium magnetic isotope 25Mg on the colony forming ability of E. coli bacteria is associated with processes that are responsible for cell division. The above-mentioned effects of bacterial magnetosensitivity (to magnetic fields and magnetic isotopes) are in good agreement with theoretical predictions of the theory of spin-dependent enzymatic reactions.  相似文献   

3.
The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by stepwise passage in culture media containing increasing concentrations of AgNO3. The published genome of E. coli ATCC 8739 contains a region showing strong homology to the Sil system genes. The role of this region in E. coli ATCC 8739 was assessed by monitoring the expression of silC upon silver stress, which resulted in a 350-fold increased expression. De novo sequencing of the whole genome of a silver resistant strain derived from E. coli ATCC 8739 revealed mutations in ORFs putative for SilR and CusR. The silver resistant strain (E. coli AgNO3R) showed constitutive expression of silC which posed a cost of fitness resulting in retarded growth. Furthermore, E. coli AgNO3R exhibited cross-resistance to ciprofloxacin and a slightly increased tolerance to ampicillin. This study demonstrates that E. coli is able to develop resistance to silver, which may pose a threat towards an effective use of silver compounds as antiseptics.  相似文献   

4.
Escherichia coli strains from swine origin, either susceptible or resistant to colistin, were grown under planktonic and biofilm cultures. After which, they were treated with antibacterial agents including nisin and enterocin DD14 bacteriocins, colistin and their combinations. Importantly, the combination of colistin, enterocin DD14 and nisin eradicated the planktonic and biofilm cultures of E. coli CIP54127 and the E. coli strains with colistin-resistance phenotype such as E. coli 184 (mcr-1 +) and E. coli 289 (mcr-1 ?), suggesting therefore that bacteriocins from lactic acid bacteria could be used as agents with antibiotic augmentation capability.  相似文献   

5.
To clarify the interactions between a common food spoilage yeast and two pathogenic bacteria involved in outbreaks associated with fruit juices, the present paper studies the effect of the interplay of Candida krusei, collected from UF membranes, with Escherichia coli O157:H7 and Salmonella enterica in the overall process of adhesion and colonization of abiotic surfaces. Two different cases were tested: a) co-adhesion by pathogenic bacteria and yeasts, and b) incorporation of bacteria to pre-adhered C. krusei cells. Cultures were made on stainless steel at 25°C using apple juice as culture medium. After 24 h of co-adhesion with C. krusei, both E. coli O157:H7 and S. enterica increased their counts 1.05 and 1.11 log CFU cm2, respectively. Similar increases were obtained when incorporating bacteria to pre-adhered cells of Candida. Nevertheless C. krusei counts decreased in both experimental conditions, in a) 0.40 log CFU cm2 and 0.55 log CFU cm2 when exposed to E. coli O157:H7 and S. enterica and in b) 0.18 and 0.68 log CFU cm2, respectively. This suggests that C. krusei, E. coli O157:H7, and S. enterica have a complex relationship involving physical and chemical interactions on food contact surfaces. This study supports the possibility that pathogen interactions with members of spoilage microbiota, such as C. krusei, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella enterica in food-processing environments. Based on the data obtained from the present study, much more attention should be given to prevent the contamination of these pathogens in acidic drinks.  相似文献   

6.
Due to limited data available on the presence of antibiotic-resistant (ABR) bacteria in faeces of wild herbivores in South Africa, this study analysed resistance patterns for Escherichia coli isolates from wildebeest, zebra and giraffe in addition to pet and farm pig faeces. Total and faecal coliforms and E. coli were quantified in faecal matter using a most probable number (MPN) guideline procedure. Antibiotic resistance profiles against 12 selected antibiotics representing seven classes were determined for 30 randomly selected E. coli isolates from each animal using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disk diffusion procedure. While log10 MPN values per gram of animal faeces for total/faecal coliforms ranged from 4.51/4.11 to 5.70/5.50, the E. coli MPN values were in a range of 3.43–5.14. The proportion of ABR E. coli isolates ranged from 43% (giraffe) to 93% (zebra). About 47% of E. coli isolates from zebra faeces were categorized as multidrug-resistant (MDR), while for wildebeest and giraffe, no MDR isolates were detected. In comparison, 10% of E. coli isolates from pet pig and about 7% from farm pig faeces were categorized as MDR. Although most MDR isolates were resistant to at least one β-lactam antibiotic, only one MDR isolate from farm pig faeces was resistant to both norfloxacin and ciprofloxacin, the two fluoroquinolones tested. However, no resistance was detected to the tested carbapenems and tigecycline. The results of this study indicate that indigenous South African herbivores may serve as potential reservoirs and vectors for the dissemination of ABR E. coli strains.  相似文献   

7.

Background

Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment.

Methods

The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray.

Results

Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim–sulfamethoxazole, ampicillin, and ampicillin–sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6′)lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored blaCTX-M genes, with blaCTX-M-15 being the most prevalent.

Conclusions

Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.
  相似文献   

8.
Bacterial drug resistance and uropathogenic tract infections are among the most important issues of current medicine. Uropathogenic Escherichia coli strains are the primary factor of this issue. This article is the continuation of the previous study, where we used Kohonen relations to predict the direction of drug resistance. The characterized collection of uropathogenic E. coli strains was used for microbiological (the disc diffusion method for antimicrobial susceptibility testing), chemical (ATR/FT-IR) and mathematical (artificial neural networks, Ward’s hierarchical clustering method, the analysis of distributions of inhibition zone diameters for antibiotics, Cohen’s kappa measure of agreement) analysis. This study presents other potential tools for the epidemiological differentiation of E. coli strains. It is noteworthy that ATR/FT-IR technique has turned out to be useful for the quick and simple identification of MDR strains. Also, diameter zones of resistance of this E. coli population were compared to the population of E. coli strains published by EUCAST. We observed the bacterial behaviors toward particular antibiotics in comparison to EUCAST bacterial collections. Additionally, we used Cohen’s kappa to show which antibiotics from the same class are closely related to each other and which are not. The presented associations between antibiotics may be helpful in selecting the proper therapy directions. Here we present an adaptation of interdisciplinary studies of drug resistance of E. coli strains for epidemiological and clinical investigations. The obtained results may be some indication in deciding on antibiotic therapy.  相似文献   

9.
Therapeutic failures against diseases due to resistant Gram-negative bacteria have become a major threat nowadays as confirmed by surveillance reports across the world. One of the methods of development of multidrug resistance in Escherichia coli and Pseudomonas aeruginosa is by means of RND efflux pumps. Inhibition of these pumps might help to combat the antibiotic resistance problem, for which the structure and regulation of the pumps have to be known. Moreover, judicious antibiotic use is needed to control the situation. This paper focuses on the issue of antibiotic resistance as well as the structure, regulation and inhibition of the efflux pumps present in Escherichia coli and Pseudomonas aeruginosa.  相似文献   

10.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

11.
Isogenic knockout mutants of Escherichia coli deficient in components of the glutathione and thioredoxin redox systems and growing at various temperatures (20–46°C) exhibited considerable differences in growth rate and survival, as well as in expression of the antioxidant genes. In the parental strain E. coli BW25113 (wt) treated with ciprofloxacin, ampicillin, or streptomycin, dependence of survival on growth temperature was a V-shaped curve with the maximum sensitivity within the range corresponding to high growth rates (40–44°C). Significant inverse correlation was observed between log CFU at different temperatures and specific growth rate prior to antibiotic addition. This applied to most of the mutants, which exhibited higher resistance to the three antibiotics tested at nonoptimal temperatures (20 and 46°C) than at 37 and 40°C. No correlation was found between resistance to stress and antibiotics and expression of the antioxidant genes. The role of global regulators ppGpp and σs in E. coli resistance to antibiotics and nonoptimal temperatures was shown.  相似文献   

12.
Er-23 is a small, 51 amino acid, disulfide-rich pheromone protein used for cell signaling by Euplotes raikovi. Ten of the 51 amino acids are cysteine, allowing up to five disulfide bonds. Previous NMR work with Er-23 utilized homologously expressed protein, prohibiting isotopic labeling, and consequently the chemical shift assignments were incomplete. We have expressed uniformly 15N and 13C-labeled Er-23 in an E. coli expression system. Here we report the full backbone and side chain resonance assignments for recombinant Er-23.  相似文献   

13.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

14.
Gene clusters for biosynthesis of 24 of 34 basic O-antigen forms of Shigella spp. are identical or similar to those of the genetically closely related bacterium Escherichia coli. For 18 of these relatedness was confirmed chemically by elucidation of the O-antigen (O-polysaccharide) structures. In this work, structures of the six remaining O-antigens of E. coli O32, O53, O79, O105, O183 (all related to S. boydii serotypes), and O38 (related to S. dysenteriae type 8) were established using 1H and 13C NMR spectroscopy. They were found to be identical to the Shigella counterparts, except for the O32- and O38-polysaccharides, which differ in the presence of O-acetyl groups. The structure of the E. coli O105-related O-polysaccharide of S. boydii type 11 proposed earlier is revised. The contents of the O-antigen gene clusters of the related strains of E. coli and Shigella spp. and different mechanisms of O-antigen diversification in these bacteria are discussed in view of the O-polysaccharide structures established. These data illustrate the value of the O-antigen chemistry and genetics for elucidation of evolutionary relationships of bacteria.  相似文献   

15.
The combined effect of the zinc magnetic isotope 67Zn and weak magnetic field 25–35 mT causes a 2–4-fold increase in the colony-forming ability of bacteria E. coli in comparison with the nonmagnetic isotopes 64, 66Zn. The effects of magnetic field in the range of 2.2–8 mT were detected for all bacteria regardless of the zinc-isotope enrichment of the media. This indicates the sensitivity of intracellular processes to weak magnetic fields. An increase in the ATP concentration in E. coli cells was only detected for the bacteria grown on the medium with the magnetic zinc isotope in the range of 2.2–4.2 mT. The obtained data confirm the existence of stages of intracellular enzymatic processes that are sensitive to magnetic fields and magnetic moments of atomic nuclei.  相似文献   

16.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

17.
Bacteriophage endolysin is one of the most promising antibiotic substitutes, but in Gram-negative bacteria, the outer membrane prevents the lysin from hydrolyzing peptidoglycans and blocks the development of lysin applications. The prime strategy for new antibiotic substitutes is allowing lysin to access the peptidoglycan from outside of the bacteria by reformation of the lysin. In this study, the novel Escherichia coli (E. coli) phage lyase lysep3, which lacks outside-in catalytic ability, was fused with the N-terminal region of the Bacillus amyloliquefaciens lysin including its cell wall binding domain D8 through the best manner of protein fusion based on the predicted tertiary structure of lysep3-D8 to obtain an engineered lysin that can lyse bacteria from the outside. Our results showed that lysep3-D8 could lyse both Gramnegative and Gram-positive bacteria, whereas lysep3 and D8 have no impact on bacterial growth. The MIC of lysep3-D8 on E. coli CVCC1418 is 60 μg/ml; lysep3-D8 can inhibit the growth of bacteria up to 12 h at this concentration. The bactericidal spectrum of lysep3-D8 is broad, as it can lyse of all of 14 E. coli strains, 3 P. aeruginosa strains, 1 Acinetobacter baumannii strain, and 1 Streptococcus strain. Lysep3-D8 has sufficient bactericidal effects on the 14 E. coli strains tested at the concentration of 100 μg/ml. The cell wall binding domain of the engineered lysin can destroy the integrity of the outer membrane of bacteria, thus allowing the catalytic domain to reach its target, peptidoglycan, to lyse the bacteria. Lysep3-D8 can be used as a preservative in fodder to benefit the health of animals. The method we used here proved to be a successful exploration of the reformation of phage lysin.  相似文献   

18.

Background

The ability of bacteria to acquire resistance to antibiotics relies to a large extent on their capacity for genome modification. Prokaryotic genomes are highly plastic and can utilize horizontal gene transfer, point mutations, and gene deletions or amplifications to realize genome expansion and rearrangements. The contribution of point mutations to de novo acquisition of antibiotic resistance is well-established. In this study, the internal genome rearrangement of Escherichia coli during to de novo acquisition of antibiotic resistance was investigated using whole-genome sequencing.

Results

Cells were made resistant to one of the four antibiotics and subsequently to one of the three remaining. This way the initial genetic rearrangements could be documented together with the effects of an altered genetic background on subsequent development of resistance. A DNA fragment including ampC was amplified by a factor sometimes exceeding 100 as a result of exposure to amoxicillin. Excision of prophage e14 was observed in many samples with a double exposure history, but not in cells exposed to a single antibiotic, indicating that the activation of the SOS stress response alone, normally the trigger for excision, was not sufficient to cause excision of prophage e14. Partial deletion of clpS and clpA occurred in strains exposed to enrofloxacin and tetracycline. Other deletions were observed in some strains, but not in replicates with the exact same exposure history. Various insertion sequence transpositions correlated with exposure to specific antibiotics.

Conclusions

Many of the genome rearrangements have not been reported before to occur during resistance development. The observed correlation between genome rearrangements and specific antibiotic pressure, as well as their presence in independent replicates indicates that these events do not occur randomly. Taken together, the observed genome rearrangements illustrate the plasticity of the E. coli genome when exposed to antibiotic stress.
  相似文献   

19.
A plasmid carrying the Deinococcus radiodurans recX gene under the control of a lactose promoter decreases the Escherichia coli cell resistance to UV irradiation and γ irradiation and also influences the conjugational recombination process. The D. radiodurans RecX protein functions in the Escherichia coli cells similarly to the E. coli RecX protein. Isolated and purified D. radiodurans RecX and E. coli RecX proteins are able to replace each other interacting with the E. coli RecA and D. radiodurans RecA proteins in vitro. Data obtained demonstrated that regulatory interaction of RecA and RecX proteins preserves a high degree of conservatism despite all the differences in the recombination reparation system between E. coli and D. radiodurans.  相似文献   

20.
Lysostaphin family endopeptidases, produced by Staphylococcus genus, are zinc-dependent enzymes that cleave pentaglycine bridges of cell wall peptidoglycan. They act as autolysins to maintain cell wall metabolism or as toxins and weapons against competing strains. Consequently, these enzymes are compelling targets for new drugs as well as are potential antimicrobial agents themselves against Staphylococcus pathogens, which depend on cell wall to retain their immunity against antibiotics. The rapid spread of methicillin and vancomycin-resistant Staphylococcus aureus strains draws demand for new therapeutic approaches. S. aureus gene sa0205 was found to be implicated in resistance to vancomycin and synthesis of the bacteria cell wall. The gene encodes for a catalytic domain of a lysostaphin-type endopeptidase. We aim to obtain the structure of the Sa0205 catalytic domain, the first solution structure of the catalytic domain of the lysostaphin family enzymes. In addition, we are to investigate the apparent binding of the second zinc ion, which has not been previously reported for the enzyme group. Herein, we present the backbone and side chain resonance assignments of Sa0205 endopeptidase catalytic domain in its one and two zinc-bound forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号