首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reduced expression of the manganese-dependent superoxide dismutase (SOD2) is characterized by increased cardiac oxidative stress. Oxidative stress has also been described in situations of physical exercise. We investigated the influence of physical exercise (EX; treadmill 1 h/day at 15 m/min, 5 days/wk, at an angle of 5° for a duration of 8 wk) on cardiac function [heart frequency (HF), echocardiography, morphometry], oxidative stress [reactive oxygen species (ROS)], and antioxidative defence capacity (peroxiredoxin 1-6) in male SOD2-knockout (SOD2_EX) and wild-type mice (WT_EX) compared with untrained age-matched animals (WT_CON; SOD2_CON). In SOD2_CON, heart weight, cardiomyocyte diameter, and cardiac ROS were significantly larger and peroxiredoxin isoforms 4-6 lower than in WT_CON. The vessel-to-cardiomyocyte ratio, cardiac VEGF-concentration, and cardiac function were similar in SOD2_CON and WT_CON. Both groups tolerated the exercise protocol well. In WT, exercise significantly increased vessel-to-cardiomyocyte ratio and ROS-generation and downregulated peroxiredoxin isoforms 4-6 and VEGF generation. The vessel-to-cardiomyocyte ratio, cardiac VEGF concentration, and cardiac ROS were not altered in SOD2_EX compared with SOD2_CON, but a significant upregulation of cardiac peroxiredoxin 1 and 4 was observed. Similar to the result observed in WT_EX, peroxiredoxin 3 was upregulated in SOD2_EX. Chronic exercise shifted the (mal)adaptive hypertrophic into a compensated dilated cardiac phenotype in SOD2_EX. In conclusion, downregulation of SOD2 induces a maladaptive cardiac hypertrophy. In this situation, physical exercise results in a further deterioration of cardiac remodeling despite an upregulation of the antioxidative defense system.  相似文献   

2.
The mammalian 1-Cys peroxiredoxin (Prdx6) is a unique member of the peroxiredoxin family of proteins capable of protecting cells from metal-catalyzed oxidative damage. We recently identified Prdx6 as a candidate for the quantitative trait locus Ath1, a gene responsible for a difference in diet-induced atherosclerosis susceptibility in mice. To investigate the role of Prdx6 in atherosclerosis, we generated transgenic mice that overexpress the Prdx6 allele from the Ath1-resistant 129/SvJ strain on an Ath1-susceptible C57BL/6J background. These mice expressed significantly elevated levels of Prdx6 mRNA and protein in multiple tissues including liver, aorta, and peritoneal macrophages, which accumulated significantly lower levels of hydrogen peroxide, revealing an enhanced antioxidant activity in these mice. However, overexpression of Prdx6 had no protective effect on LDL oxidation in vitro, and transgenic mice fed an atherogenic diet for 10 weeks did not possess an increased resistance to atherosclerosis nor did they maintain the high prediet plasma HDL levels consistent with the Ath1-resistant phenotype. In addition, the Prdx6 allele from the susceptible strain was shown to have a higher antioxidant activity than that of the resistant strains. These data suggest that the increased peroxidase activity attributable to Prdx6 overexpression in transgenic mice is not sufficient to protect mice from atherosclerosis, and that Prdx6 is not likely to be the gene underlying Ath1.  相似文献   

3.
Q Zheng  Y Ren  R Tzekov  Y Zhang  B Chen  J Hou  C Zhao  J Zhu  Y Zhang  X Dai  S Ma  J Li  J Pang  J Qu  W Li 《PloS one》2012,7(8):e44855
Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.  相似文献   

4.
Peroxiredoxins are redox-sensing multifunctional enzymes, among them peroxiredoxin 6 (Prx6) can neutralize the most broadest range of hydroperoxides and play an important role in maintaining the redox homeostasis of the cell. In the present study, radioprotective and signaling regulatory effects of Prx6 were demonstrated and characterized. Intravenously administered exogenous Prx6 protects the organism of mice from the destructive action of ionizing radiation in the lethal dose range of 5–10?Gy. Dose reduction factor of 1.4 Prx6 injection reduces the severity of radiation-induced leuko- and thrombopenia in irradiated animals, also preventing the destruction of epithelial cells in the small intestine. Injecting exogenous Prx6 also as its mutated form of Prx6–C47S lacking peroxidase activity affects the expression of genes involved in antioxidant response, DNA reparation, apoptosis and inflammatory processes, in bone marrow cells both in intact animals and in those subjected to ionizing radiation. The radioprotective properties of Prx6 are based, on the one hand, on the capability for ROS neutralization, and on the other hand – on the potentiality for activation of reparation processes of the cell under oxidative stress conditions. Prx6 can be considered as a potentially perspective radioprotective agent for the reduction of risks from the damaging action of ionizing radiation on the mammalian organism.  相似文献   

5.
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.  相似文献   

6.
We report here that spermatozoa of mice lacking both the sperm nucleus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H(2)O(2)-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases) the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity. Despite these compensatory mechanisms cauda-stored spermatozoa of double mutant animals show high levels of DNA oxidation, increased fragmentation and greater susceptibility to nuclear decondensation. Nevertheless, the enzymatic epididymal salvage response is sufficient to maintain full fertility of double KO males whatever their age, crossed with young WT female mice.  相似文献   

7.
Overexpression of peroxiredoxin 6 (Prdx6) has been shown to protect lungs of mice against hyperoxia-mediated injury. In this study, we evaluated whether genetic inactivation of Prdx6 in mice increases sensitivity to oxygen toxicity. We evaluated mouse survival, lung histopathology, total protein and nucleated cells in bronchoalveolar lavage fluid (BALF), and oxidation of lung protein and lipids by measurement of protein carbonyls and thiobarbituric reactive substances (TBARS), respectively. The duration of survival for Prdx6 -/- mice was significantly shorter than that observed in wild-type mice on exposure to 85 or 100% O(2); survival of Prdx6 +/- mice was intermediate. After 72-h exposure to 100% O(2), lungs of Prdx6-/- mice showed more severe injury than wild-type with increased wet/dry weight, epithelial cell necrosis and alveolar edema on microscopic examination, increased protein and nucleated cells in BALF, and higher content of TBARS and protein carbonyls in lung homogenate. These findings show that Prdx6 -/- mice have increased sensitivity to hyperoxia and provide in vivo evidence that Prdx6 is an important lung antioxidant enzyme.  相似文献   

8.
Previously, we demonstrated that Ath1 is a quantitative trait locus for aortic fatty streak formation, located on Chromosome (chr) 1, with susceptibility in C57BL/6J mice and resistance in C3H/HeJ and BALB/cJ mice fed an atherogenic diet. In this study, we find an atherosclerosis susceptibility locus in the same region of Chr 1 by constructing two congenic strains with the resistance phenotype transferred from different resistant strains, PERA/EiJ or SPRETUS/EiJ. By backcrossing one congenic strain to C57BL/6J and testing recombinant animals, we reduced the distance of the atherosclerosis susceptibility region to 2.3 cM between D1Mit14 and D1Mit10. Further testing of nine recombinant animals showed that eight of the nine were consistent with a further narrowing between D1Mit159 and D1Mit398 a distance of 0.66 cM. This region encompasses a number of potential candidate genes including the thiol-specific antioxidant gene Aop2, also known as peroxiredoxin 5 (Prdx5). AOP2 is capable of reducing hydroperoxides and lipid peroxides in the cell. To investigate Aop2 as a potential candidate, we mapped Aop2 in our backcross and localized it to the atherosclerosis susceptibility interval. We determined that Aop2 is highly expressed in atherosclerosis-related tissues including liver and heart. We also found an inverse correlation between Aop2 mRNA in liver and atherosclerosis phenotype for strains C57BL/6 and the resistant congenic derived from SPRETUS/EiJ. Since LDL oxidation has been implicated in the pathogenesis of this disease, and AOP2 possesses antioxidant activity, we suggest the role of Aop2 in atherosclerosis susceptibility needs to be further explored.  相似文献   

9.
Peroxiredoxin 6 (Prdx6), a bifunctional 25-kDa protein with both GSH peroxidase and phospholipase A2 activities, is the only mammalian 1-Cys member of the peroxiredoxin superfamily and is expressed in all major organs, with a particularly high level in lung. Prdx6 uses GSH as an electron donor to reduce H2O2 and other hydroperoxides including phospholipid hydroperoxides at approximately 5 micromol/mg protein/min with K1 approximately 3 x 10(6) M(-1) s(-1). Oxidation of the Cys47 to a sulfenic acid during catalysis requires piGST-catalyzed glutathionylation and reduction with GSH to complete the enzymatic cycle. Prdx6 stably overexpressed in cells protected against oxidative stress, whereas antisense treatment resulted in oxidant stress and apoptosis. Adenoviral-mediated overexpression of Prdx6 in mouse lungs protected against the toxicity of hyperoxia, whereas Prdx6-null mice were more sensitive to the effects of hyperoxia or paraquat. We postulate that Prdx6 functions in antioxidant defense mainly by facilitating repair of damaged cell membranes via reduction of peroxidized phospholipids. The PLA2 activity of Prdx6 is Ca2+ independent and maximal at acidic pH. Inhibition of PLA2 activity results in alterations of lung surfactant phospholipid synthesis and turnover. Thus, Prdx6, a unique mammalian peroxiredoxin, is an important antioxidant enzyme and has a major role in lung phospholipid metabolism.  相似文献   

10.
Oxidative stress is the main component of pathogenesis in ischemia–reperfusion injury. The administration of exogenous antioxidants suppresses oxidative stress and may decrease the severity of ischemia–reperfusion injury. The intestine is one of the most sensitive organs to the effect of ischemia–reperfusion. A rat model of a small intestine ischemia–reperfusion injury, based on occlusion of the superior mesenteric artery, was used in this work. Recombinant peroxiredoxin 6, a representative of an ancient family of peroxidases that are able to neutralize a broad range of both organic and inorganic peroxides, was used as an exogenous antioxidant. The intravenous administration of the exogenous peroxiredoxin 6 prior to ischemia–reperfusion minimizes tissue injury and reduces apoptotic cell death in the intestine and the mesenteric vessels. The impact of the exogenous peroxiredoxin 6 upon the NO level elevation in animal blood has been shown to be correlated with the enhanced inducible NO synthase expression. Thus, the use of exogenous peroxiredoxin 6 in ischemia–reperfusion injury of the intestine and the mesenteric vessels promotes normalization of the tissue redox homeostasis, structure protection, and restoration of the microvasculature.  相似文献   

11.
MER5 (also called peroxiredoxin III, PrxIII) is a member of peroxiredoxin family that has antioxidant activity. The present study was performed to investigate its in vivo function using MER5 knockout mice. MER5 knockout mice were born in normal frequency and could grow to maturity, but we found that intracellular ROS levels are significantly higher in the macrophages of the knockout mice. We examined roles of MER5 function for the oxidative stress responses by intratracheal inoculation of lipopolysaccharide (LPS) to the mice. Lung inflammation such as inflammatory cell infiltration and airway wall thickening was more severely detected in the knockout mice. At the same time, oxidative damage on DNA and proteins was more strongly detected in lung tissues of the knockout mice, including 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation and protein carbonylation. The degrees of lung inflammation and oxidative damage were positively related with LPS doses. Our results indicate that MER5 knockout mice accumulated higher intracellular ROS levels, which cause LPS-induced lung injury more severely, and thus, suggested that MER5 acts as an important scavenger of reactive oxygen species (ROS) under oxidative stress.  相似文献   

12.
Methamphetamine (METH) is an abusive psychostimulant that induces neuronal cell death/degeneration in experimental animals and humans. METH-induced apoptosis in rat pheochromocytoma cells was utilized to study the neurotoxic mechanism. During METH intoxication, we found that peroxiredoxins and thioredoxins/thioredoxin reductases (peroxiredoxin reducing systems) which are known to prevent oxidative stress and apoptosis were differentially downregulated and upregulated, respectively. We also found not only the free radicals but also the oxidative forms of peroxiredoxin and thioredoxin were increased, indicating the dysfunction of these enzymes. Thus, METH-induced differential regulation and oxidation of peroxiredoxins and thioredoxin may be an important mechanism for apoptosis.  相似文献   

13.
BACKGROUND: Naphthalene-induced respiratory tract toxicity in mice is characterized by specific and rapid loss of the Clara cell population, which is restored only after several days. The sources of restoration of this cell population remain unclear. We investigated whether BM-derived cells participated in the process of epithelial restoration following naphthalene toxicity compared with bacterial infection. We further investigated the role of BM-derived cells in restoration of expression of peroxiredoxin V (PRXV), one of the major proteins of antioxidant defense, specifically expressed in the bronchial epithelium. METHODS: We transplanted GFP-tagged BM cells into 5 Gy-irradiated C57BL/6 recipients. Following 1 month of recovery, experimental animals were subjected to 250 mg/kg naphthalene i.p. An additional group of animals received intratracheal instillation of Escherichia coli to induce acute bacterial inflammation. Animals were killed at 1-12 days after naphthalene and analyzed immunohistochemically. RESULTS: Recipients' cells of bronchial epithelium demonstrated significantly reduced levels of PRXV expression following naphthalene. In animals with acute bacterial inflammation, PRXV levels were not reduced in epithelium and participation of BM-derived cells in epithelial restoration was minimal. Following naphthalene, GFP(+) cells were present in large numbers in lung parenchyma and epithelium of conducting airways starting at 1 day following injury. GFP(+) progeny of BM cells was the major source of PRXV in the epithelium. DISCUSSION: These data suggest that BM-derived cells may provide a source of antioxidant protection of airways by expression of PRXV in a model of acute epithelial respiratory tract toxicity.  相似文献   

14.
Peroxiredoxin 2 has immune regulatory functions, but its expression in human peripheral blood lymphocytes and levels in extracellular fluid in healthy subjects and rheumatoid arthritis patients are poorly described. In the present study, the median intracellular peroxiredoxin 2 protein content of lymphocytes from rheumatoid arthritis patients was more than two-fold higher compared with healthy subjects' lymphocytes. Intracellular peroxiredoxin 3 levels were similar in healthy and rheumatoid arthritis lymphocytes. Flow cytometry detected peroxiredoxin 2 on the surface of ca. 8% of T cells and ca. 56% of B cells (median % values) of all subjects analyzed. Exofacial thioredoxin-1 was also observed. In the total lymphocyte population from rheumatoid arthritis patients, few cells (median, 6%) displayed surface peroxiredoxin 2. In contrast, a significantly increased proportion of interleukin-17(+ve) lymphocytes were exofacially peroxiredoxin 2(+ve) (median, 39%). Prdx2 was also detected in human extracellular fluids. We suggest that crucial inflammatory cell subsets, i.e. interleukin-17(+ve) T cells, exhibit increased exofacial redox-regulating enzymes and that peroxiredoxin 2 may be involved in the persistence of pro-inflammatory cells in chronic inflammation.  相似文献   

15.
Alcoholic liver disease is multifactorial and oxidative stress is believed to play an intimate role in the initiation and progression of this pathology. The goals of this study were to investigate the effect of chronic ethanol treatment on inducing hepatic oxidative stress and peroxiredoxin 6 expression. After 9 weeks of treatment with an ethanol-containing diet, significant increases in serum ALT activity, liver to body weight ratio, liver triglycerides, CYP2E1 protein expression, and CYP2E1 activity were observed. Chronic ethanol feeding resulted in oxidative stress as evidenced by decreases in hepatic glutathione content and increased deposition of 4-hydroxynonenal and 4-oxononenal protein adducts. In addition, novel findings of decreased PRX6 protein and mRNA and increased levels of carbonylated PRX6 protein were observed in the ethanol-treated animals compared to the pair-fed controls. Lastly, NF-kappaB activity was found to be significantly increased in the ethanol-treated animals. Concurrent with the increase in NF-kappaB activity, decreases in both MEK1/2 and ERK1/2 phosphorylation were also observed in the ethanol-treated animals compared to the pair-fed controls. Together, these data demonstrate that chronic ethanol treatment results in oxidative stress, implicating NF-kappaB activation as an integral mechanism in the negative regulation of PRX6 gene expression in the mouse liver.  相似文献   

16.
We recently developed a sensitive method using biotin-N-maleimide (biotin-NM) as a probe to positively identify oxidized mitochondrial proteins. In this study, biotin-NM was used to identify oxidized cytosolic proteins in alcohol-fed mouse livers. Alcohol treatment for 6 wk elevated the levels of CYP2E1 and nitrotyrosine, a marker of oxidative stress. Markedly increased levels of oxidized proteins were detected in alcohol-fed mouse livers compared to pair-fed controls. The biotin-NM-labeled oxidized proteins from alcohol-exposed mouse livers were subsequently purified with streptavidin-agarose and resolved on 2-DE. More than 90 silver-stained protein spots that displayed differential intensities on 2-D gels were identified by MS. Peptide sequence analysis revealed that many enzymes or proteins involved in stress response, chaperone activity, intermediary metabolism, and antioxidant defense systems such as peroxiredoxin were oxidized after alcohol treatment. Smaller fragments of many proteins were repeatedly detected only in alcohol-fed mice, indicating that many oxidized proteins after alcohol exposure were degraded. Immunoblot results showed that the level of oxidized peroxiredoxin (inactivated) was markedly increased in the alcohol-exposed mouse livers and ethanol-sensitive hepatoma cells compared to the corresponding controls. Our results may explain the underlying mechanism for cellular dysfunction and increased susceptibility to other toxic agents following alcohol-mediated oxidative stress.  相似文献   

17.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

18.
Peroxiredoxins are cysteine-dependent peroxide reductases that group into 6 different, structurally discernable classes. In 2011, our research team reported the application of a bioinformatic approach called active site profiling to extract active site-proximal sequence segments from the 29 distinct, structurally-characterized peroxiredoxins available at the time. These extracted sequences were then used to create unique profiles for the six groups which were subsequently used to search GenBank(nr), allowing identification of ∼3500 peroxiredoxin sequences and their respective subgroups. Summarized in this minireview are the features and phylogenetic distributions of each of these peroxiredoxin subgroups; an example is also provided illustrating the use of the web accessible, searchable database known as PREX to identify subfamily-specific peroxiredoxin sequences for the organism Vitis vinifera (grape).  相似文献   

19.
Li L  Shoji W  Oshima H  Obinata M  Fukumoto M  Kanno N 《FEBS letters》2008,582(16):2431-2434
We observed frequent stillbirth in peroxiredoxin III (PrxIII) knockout maternal mice. Quantitative real time PCR (qRT-PCR) and Western-blot analysis revealed increased oxidative stress in placentas that were deficient in PrxIII. We did not find significant difference between PrxIII knockout maternal mice and wild-type littermates in hematological parameters, fetal number, and embryonic development. Nevertheless, we noticed enhanced expression of PrxI in erythrocytes of pregnant knockout mice. Our results provided in vivo evidence that PrxIII played a crucial role in placental antioxidant defense. Up-regulation of PrxI might provide a compensation that protected erythrocytes against oxidative damage.  相似文献   

20.
Bax inhibitor-1 (BI-1) is an anti-apoptotic protein located in the endoplasmic reticulum (ER). The role of BI-1 has been studied in different physiopathological models including ischemia, diabetes, liver regeneration and cancer. However, fundamental knowledge about the effects of BI-1 deletion on the proteome is lacking. To further explore this protein, we compared the levels of different proteins in bi-1 (-/-) and bi-1 (+/+) mouse tissues by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). In several bi-1 (-/-) mice, glucose-regulated protein 75 (GRP75/mortalin/ PBP74/mthsp70), peroxiredoxin6 (Prx6) and fumarylacetoacetate hydrolase (FAH) showed a pI shift that could be attributed to post-translational modifications. Selenium-binding protein 2 (SBP2) and ferritin light chain 1 levels were significantly increased. Phosphatidylethanolamine-binding protein-1 (PEBP-1) was dramatically decreased in bi-1 (-/-) mice, which was confirmed by Western blotting. The phosphorylation of GRP75, Prx6 and FAH were compared between bi-1 (+/+) and bi-1 (-/-) mice using liver tissue lysates. Of these three proteins, only one exhibited modified phosphorylation; Tyr phosphorylation of Prx6 was increased in bi-1 (-/-) mice. Our protein profiling results provide fundamental knowledge about the physiopathological function of BI-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号