首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since targeting of recombinant adenovirus vectors to defined cell types in vivo is a major challenge in gene therapy and vaccinology, we explored the natural diversity in human adenovirus tissue tropism. Hereto, we constructed a library of Ad5 vectors carrying fibers from other human serotypes. From this library, we identified vectors that efficiently infect human cells that are important for diverse gene therapy approaches and for induction of immunity. For several medical applications (prenatal diagnosis, artificial bone, vaccination, and cardiovascular disease), we demonstrate the applicability of these novel vectors. In addition, screening cell types derived from different species revealed that cellular receptors for human subgroup B adenoviruses are not conserved between rodents and primates. These results provide a rationale for utilizing elements of human adenovirus serotypes to generate chimeric vectors that improve our knowledge concerning adenovirus biology and widen the therapeutic window for vaccination and many different gene transfer applications.  相似文献   

2.
Virus-specific neutralizing antibodies present an obstacle to the effective use of adenovirus vectors for gene therapy and vaccination. The specific sites recognized by neutralizing antibodies have not been identified for any adenovirus, but they have been proposed to reside within the hexon, in small regions of the molecule that are exposed on the capsid surface and possess sequences that vary among serotypes. We have mapped the epitopes recognized by a panel of seven hexon-specific monoclonal antibodies that neutralize the chimpanzee adenovirus 68 (AdC68). Surface plasmon resonance experiments revealed that the antibodies compete for a single hexon binding site, and experiments with synthetic peptides indicated that this site resides within just one small surface loop. Mutations within this loop (but not in other surface loops) permitted virus to escape neutralization by all seven monoclonal antibodies and to resist neutralization by polyclonal antisera obtained from animals immunized against AdC68. These results indicate that a single small surface loop defines a major neutralization site for AdC68 hexon.  相似文献   

3.
E1/E3缺失型腺病毒载体引起细胞周期G_2/M阻滞   总被引:2,自引:0,他引:2  
腺病毒载体广泛应用于基因治疗和转基因研究 ,目前常用的E1 E3缺失型复制缺陷腺病毒载体虽然失去了病毒复制必需的E1基因 ,但载体上的其它病毒基因仍能在宿主细胞内表达 .为研究这些基因对细胞的毒性作用 ,选择了 3种携带没有明显细胞毒性外源基因的腺病毒载体 ,观察感染 2种肿瘤细胞后细胞核形态改变 ,并用流式细胞仪检测细胞周期及凋亡情况 .发现大剂量重组缺陷型腺病毒感染细胞后引起细胞变圆 ,核增大 ,细胞周期阻滞于G2 M期 ,继而染色质凝聚 ,细胞发生坏死或凋亡 ;各种腺病毒载体造成G2 M阻滞所需感染量不同 ,但都随时间延长和感染量增加而加重 .这些结果提示腺病毒基因对细胞的影响是多方面的 ,在以此类病毒载体进行基因转移和基因治疗的研究中 ,精确滴定病毒滴度和转导效率非常重要 ,腺病毒基因表达造成的毒副作用给此类研究增加了变数  相似文献   

4.
5.
Adenoviral vectors are among the most promising vectors available for human gene therapy. However, the use of recombinant adenoviral vectors, including replicationcompetent adenovirus (RCA), raises a variety of safety concerns in relation to the development of new therapies based on gene therapy. To examine how organic compounds change in rat plasma following the injection of adenovirus, beta-galactosidase expressing recombinant adenovirus (designated rAdLacZ) or RCA, we investigated the content of fatty acids (FAs), which are important biochemical indicators in pathological conditions. Pattern recognition analysis on the level of FAs in rat plasma is described for the visual discrimination of adenovirus infection groups from normal controls. Plasma FAs from four control rats (normal group), and from four rats with rAdLacZ infection and six rats with RCA infection (the two abnormal groups), were examined by gas chromatography-mass spectrometry in selected ion monitoring modes as their tert-butyldimethylsilyl derivatives. In total, 20 FAs were positively detected and quantified. The results of the Studentos t-test on the normal mean of two abnormal groups, the levels of three FAs (p< 0.05) from rAdLacZ group and eleven FAs (p < 0.05) from RCA group were significantly different. When star symbol plotting was applied to the group mean values of 20 FAs after normalization to the corresponding normal mean values, the resulting eicosagonal star patterns of the two infected groups were distorted into similar shapes, but were distinguishable from each other. Thus, these approaches will be useful for screening and monitoring of diagnostic markers for the effects of infection following the use of adenoviral vectors in gene therapy.  相似文献   

6.
Ebner K  Pinsker W  Lion T 《Journal of virology》2005,79(20):12635-12642
The adenovirus (AdV) hexon constitutes the major virus capsid protein. The epitopes located on the hexon protein are targets of neutralizing antibodies in vivo, serve in the recognition by cytotoxic T cells, and provide the basis for the classification of adenoviruses into the 51 serotypes known to date. We have sequenced the entire hexon gene from human serotypes with incomplete or no sequence information available (n = 34) and performed a comparative analysis of all sequences. The overall sequence divergence between the 51 human serotypes ranged from 0.7 to 25.4% at the protein level. The sequence information has been exploited to assess the phylogeny of the adenovirus family, and protein distances between the six AdV species (A to F) and among individual serotypes within each species were calculated. The analysis revealed that the differences among serotypes within individual species range from 0.3 to 5.4% in the conserved regions (765 amino acids [aa]) and from 1.5 to 59.6% in the variable regions (154 to 221 aa). Serotypes of different species showed an expectedly greater divergence both in the conserved (5.9 to 12.3%) and variable (49.0 to 74.7%) regions. Construction of a phylogenetic tree revealed three major clades comprising the species B+D+E, A+F, and C, respectively. For serotypes 50 and 51, the original assignment to species B and D, respectively, is not in accordance with the hexon DNA and protein sequence data, which placed serotype 50 within species D and serotype 51 within species B. Moreover, the hexon gene of serotype 16, a member of species B, was identified as the product of recombination between sequences of species B and E. In addition to providing a basis for improved molecular diagnostics and classification, the elucidation of the complete hexon gene sequence in all AdV serotypes yields information on putative epitopes for virus recognition, which may have important implications for future treatment strategies permitting efficient targeting of any AdV serotype.  相似文献   

7.
Improved adenovirus vectors for infection of cardiovascular tissues   总被引:4,自引:0,他引:4  
To identify improved adenovirus vectors for cardiovascular gene therapy, a library of adenovirus vectors based on adenovirus serotype 5 (Ad5) but carrying fiber molecules of other human serotypes, was generated. This library was tested for efficiency of infection of human primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Based on luciferase, LacZ, or green fluorescent protein (GFP) marker gene expression, several fiber chimeric vectors were identified that displayed improved infection of these cell types. One of the viruses that performed particularly well is an Ad5 carrying the fiber of Ad16 (Ad5.Fib16), a subgroup B virus. This virus showed, on average, 8- and 64-fold-increased luciferase activities on umbilical vein ECs and SMCs, respectively, compared to the parent vector. GFP and lacZ markers showed that approximately 3-fold (ECs) and 10-fold (SMCs) more cells were transduced. Experiments performed with both cultured SMCs and organ cultures derived from different vascular origins (saphenous vein, iliac artery, left interior mammary artery, and aorta) and from different species demonstrated that Ad5.Fib16 consistently displays improved infection in primates (humans and rhesus monkeys). SMCs of the same vessels of rodents and pigs were less infectable with Ad5.Fib16 than with Ad5. This suggests that either the receptor for human Ad16 is not conserved between different species or that differences in the expression levels of the putative receptor exist. In conclusion, our results show that an Ad5-based virus carrying the fiber of Ad16 is a potent vector for the transduction of primate cardiovascular cells and tissues.  相似文献   

8.
人腺病毒流行广泛,感染常诱发呼吸道疾病、流行性结膜炎等疾病。腺病毒是研究较为深入的一类病原体,并且作为病毒载体已广泛应用,也是基因治疗最常用的病毒载体,尤其在肿瘤基因治疗和病毒溶瘤方面具有较大的研究价值和临床应用潜力。文中对腺病毒的生物学特性以及应用范围等方面进行综述,以期为腺病毒的工程化与临床应用提供参考。  相似文献   

9.
Recombinant adenoviruses are among the most promising tools for vaccine antigen delivery. Recently, the development of new vectors has focused on serotypes to which the human population is less exposed in order to circumvent pre-existing anti vector immunity. This study describes the derivation of a new vaccine vector based on a chimpanzee adenovirus, Y25, together with a comparative assessment of its potential to elicit transgene product specific immune responses in mice. The vector was constructed in a bacterial artificial chromosome to facilitate genetic manipulation of genomic clones. In order to conduct a fair head-to-head immunological comparison of multiple adenoviral vectors, we optimised a method for accurate determination of infectious titre, since this parameter exhibits profound natural variability and can confound immunogenicity studies when doses are based on viral particle estimation. Cellular immunogenicity of recombinant E1 E3-deleted vector ChAdY25 was comparable to that of other species E derived chimpanzee adenovirus vectors including ChAd63, the first simian adenovirus vector to enter clinical trials in humans. Furthermore, the prevalence of virus neutralizing antibodies (titre >1:200) against ChAdY25 in serum samples collected from two human populations in the UK and Gambia was particularly low compared to published data for other chimpanzee adenoviruses. These findings support the continued development of new chimpanzee adenovirus vectors, including ChAdY25, for clinical use.  相似文献   

10.
Adenovirus type 5 (Ad5) is one of the most promising vectors for gene therapy applications. Genetic engineering of Ad5 capsid proteins has been employed to redirect vector tropism, to enhance infectivity, or to circumvent preexisting host immunity. As the most abundant capsid protein, hexon modification is particularly attractive. However, genetic modification of hexon often results in failure of rescuing viable viruses. Since hypervariable regions (HVRs) are nonconserved among hexons of different serotypes, we investigated whether the HVRs could be used for genetic modification of hexon by incorporating oligonucleotides encoding six histidine residues (His6) into different HVRs in the Ad5 genome. The modified viruses were successfully rescued, and the yields of viral production were similar to that of unmodified Ad5. A thermostability assay suggested the modified viruses were stable. The His6 epitopes were expressed in all modified hexon proteins as assessed by Western blotting assay, although the intensity of the reactive bands varied. In addition, we examined the binding activity of anti-His tag antibody to the intact virions with the enzyme-linked immunosorbent assay and found the His6 epitopes incorporated in HVR2 and HVR5 could bind to anti-His tag antibody. This suggested the His6 epitopes in HVR2 and HVR5 were exposed on virion surfaces. Finally, we examined the infectivities of the modified Ad vectors. The His6 epitopes did not affect the native infectivity of Ad5 vectors. In addition, the His6 epitopes did not appear to mediate His6-dependent viral infection, as assessed in two His6 artificial receptor systems. Our study provided valuable information for studies involving hexon modification.  相似文献   

11.
Development of adenovirus vectors as potential therapeutic agents for multiple applications of in vivo human gene therapy has resulted in numerous preclinical and clinical studies. However, lack of standardization of the methods for quantifying the physical concentration and functionally active fraction of virions in these studies has often made comparison between various studies difficult or impossible. This study was therefore carried out to define the variables for quantification of the concentration of adenovirus vectors. The methods for evaluation of total virion concentration included electron microscopy and optical absorbance. The methods for evaluation of the concentration of functional virions included detection of gene transfer (transgene transfer and expression) and the plaque assay on 293 cells. Enumeration of total virion concentration by optical absorbance was found to be a precise procedure, but accuracy was dependent on physical disruption of the virion to eliminate artifacts from light scattering and also on a correct value for the extinction coefficient. Both biological assays for enumerating functional virions were highly dependent on the assay conditions and in particular the time of virion adsorption and adsorption volume. Under optimal conditions, the bioactivity of the vector, defined as the fraction of total virions which leads to detected target cell infection, was determined to be 0.10 in the plaque assay and 0.29 in the gene transfer assay. This difference is most likely due to the fact that detection by gene transfer requires only measurement of levels of transgene expression in the infected cell whereas plaque formation is dependent on a series of biological events of much greater complexity. These results show that the exact conditions for determination of infectious virion concentration and bioactivity of recombinant adenovirus vectors are critical and must be standardized for comparability. These observations may be very useful in comparison of data from different preclinical and clinical studies and may also have important implications for how adenovirus vectors can optimally be used in human gene therapy.  相似文献   

12.
Ovine adenovirus 287 (OAdV287) emerges as one of the most promising gene vectors resulting from its unique biological characteristics. To obtain a more detailed knowledge about the codon usage of OAdV287, a comparative study based on the codon usage of OAdV287 and the prototypes of human adenovirus serotypes 2 and 5 (HAdV2/5) was carried out. Some commonly used indices measuring the codon usage patterns, including effective number of codons, relative synonymous codon usage, and statistical methods, were adopted. Overall, OAdV287 had a more biased and conservative codon usage pattern than that of HAdV2/5. Both mutation pressure and natural selection played important roles in shaping the codon usage patterns of these three adenoviruses. All the preference codons of OAdV287 had A/U ends and were totally different from those of sheep and humans; however, the preference codons of HAdV2/5 mostly had G/C ends and were mostly coincident with those of sheep and humans. The codon usage analysis in this study supplies some clues for further comprehending the unique biological characteristics of OAdV287 as gene vectors.  相似文献   

13.
Targeted adenoviral vectors   总被引:6,自引:0,他引:6  
Replication-defective vectors based on human adenovirus serotypes 2 and 5 (Ad2 and Ad5) possess a number of attributes which favor their use as gene delivery vehicles in gene therapy applications. However, the widespread distribution of the primary cellular receptor for Ad, the coxsackievirus and adenovirus receptor (CAR), allows Ad vectors to infect a broad range of cells in the host. Conversely, a number of tissues which represent important targets for gene therapy, such as the airway epithelium and cancer cells, are refractory to Ad infection due a paucity of CAR. Thus, there is a strong rationale for the development of CAR-independent Ad vectors capable of enhanced specificity and efficiency of gene transfer to target cells. In this article we review the approaches which have been employed to generate tropism-modified Ad vectors. These targeting strategies have led to improvements in the safety and efficacy of Ad vectors and have the potential to yield an increased therapeutic benefit in the human clinical context.  相似文献   

14.
Non-human adenoviruses such as bovine adenovirus type 3 (BAV-3) that do not replicate in human cells but can infect human cells in culture could provide an attractive alternative to human adenoviral vectors for gene therapy. In addition, a large-animal model for genetic diseases can be very useful for the assessment of the efficacy of adenovector-mediated gene delivery in man. Recombinant human subgroup C adenovectors use the coxsackie and adenovirus receptor (CAR) to enter their target cells. Through RT-PCR and sequencing we determined the complete coding sequence of bovine CAR which serves as the primary adenoviral attachment site on bovine cells. A multiple sequence alignment, involving all the previously identified CAR species (man, mouse, rat, pig, and dog) showed that bovine CAR was most related to porcine CAR (92% nucleotide similarity) and demonstrated a highly conserved adenovirus binding Ig1 domain.  相似文献   

15.
One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we attempted to delineate the role of fiber length in coxsackievirus-adenovirus receptor (CAR)- and non-CAR-mediated infection. A series of Ad serotype 5 (Ad5) capsid-based vectors containing long or short fibers with knob domains derived from Ad5, Ad9, or Ad35 was constructed and tested in adsorption, internalization, and transduction studies. For Ad5 or Ad9 knob-possessing vectors, a long-shafted fiber was critical for efficient adsorption/internalization and transduction of CAR/alphav integrin-expressing cells. Ad5 capids containing short CAR-recognizing fibers were affected in cell adsorption and infection. In contrast, for the chimeric vectors possessing Ad35 knobs, which enter cells by a CAR/alphav integrin-independent pathway, fiber shaft length had no significant influence on binding or infectibility on tested cells. The weak attachment of short-shafted Ad5 or Ad9 knob-possessing vectors seems to be causally associated with a charge-dependent repulsion between Ad5 capsid and acidic cell surface proteins. The differences between short- and long-shafted vectors in attachment or infection were abrogated by preincubation of cells with polycations. This study demonstrates that the fiber-CAR interaction is not the sole determinant for tropism of Ad vectors containing chimeric fibers. CAR- and alphav integrin-mediated infections are influenced by other factors, including the length of the fiber shaft.  相似文献   

16.
In gene therapy, retrovirus and adenovirus vectors are extensively used as gene-delivery vehicles and further large-scale processing of these viral vectors will be increasingly important. This study examined stationary and microcarrier cell culture systems with respect to the production of a retrovirus vector (encoding a monounit hammerhead ribozyme gene with an intron) and an adenovirus vector (encoding a reporter lacZ gene). Cytodex 1 and Cytodex 3 solid microcarriers were found to be able to provide good cell growth and high-titer vector production in suspension cultures. Porous microcarriers such as Cytopore 2 gave slightly lower but still efficient growth but produced significantly lower titers of retrovirus and adenovirus vector from the producer cells. The specific retrovirus production was not proportionally related to the specific growth rate of the producer cells. High MOI infection was essential for high-titer production of adenovirus vector in 293 cells. Hydrodynamic shear forces on microcarrier-grown cells increased the production yield for retrovirus vector but decreased for adenovirus vector. The cellular productivity was much more efficient for adenovirus vector produced in 293 cells as compared to the retrovirus vector produced in PA317-RCM1 cells. These findings can provide further insight into the feasibility of applying microcarrier cell culture technology to produce gene-therapy virus vectors.  相似文献   

17.
Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.  相似文献   

18.
A major impediment to the use of adenovirus as a gene therapy vector and for vaccine applications is the host immune response to adenovirus hexon-the major protein component of the icosahedral capsid. A solution may lie in novel vectors with modified or chimeric hexons designed to evade the immune response. To facilitate this approach, we have distinguished the portion of hexon that all serotypes have in common from the hypervariable regions that are responsible for capsid diversity and type-specific immunogenicity. The common hexon core-conserved because it forms the viral capsid-sets boundaries to the regions where modifications can be made to produce nonnative hexons. The core has been defined from the large and diverse set of known hexon sequences by an accurate alignment based on the newly refined crystal structures of human adenovirus types 2 (Ad2) and Ad5 hexon. Comparison of the two hexon models, which are the most accurate so far, reveals that over 90% of the residues in each have three-dimensional positions that closely match. Structures for more distant hexons were predicted by building molecular models of human Ad4, chimpanzee adenovirus (AdC68), and fowl adenovirus 1 (FAV1 or CELO). The five structures were then used to guide the alignment of the 40 full-length (>900 residues) hexon sequences in public databases. Distance- and parsimony-based phylogenetic trees are consistent and reveal evolutionary relationships between adenovirus types that parallel those of their animal hosts. The combination of crystallography, molecular modeling, and phylogenetic analysis defines a conserved molecular core that can serve as the armature for the directed design of novel hexons.  相似文献   

19.
A major obstacle to successful oral vaccination is the lack of antigen delivery systems that are both safe and highly efficient. Conventional replication-incompetent adenoviral vectors, derived from human adenoviruses of subgroup C, are poorly efficient in delivering genetic material to differentiated intestinal epithelia. To date, 51 human adenovirus serotypes have been identified and shown to recognize different cellular receptors with different tissue distributions. This natural diversity was exploited in the present study to identify suitable adenoviral vectors for efficient gene delivery to the human intestinal epithelium. In particular, we compared the capacities of a library of adenovirus type 5-based vectors pseudotyped with fibers of several human serotypes for transduction, binding, and translocation toward the basolateral pole in human and murine tissue culture models of differentiated intestinal epithelia. In addition, antibody-based inhibition was used to gain insight into the molecular interactions needed for efficient attachment. We found that vectors differing merely in their fiber proteins displayed vastly different capacities for gene transfer to differentiated human intestinal epithelium. Notably, vectors bearing fibers derived from subgroup B and subgroup D serotypes transduced the apical pole of human epithelium with considerably greater efficiency than a subgroup C vector. Such efficiency was correlated with the capacity to use CD46 or sialic acid-containing glycoconjugates as opposed to CAR as attachment receptors. These results suggest that substantial gains could be made in gene transfer to digestive epithelium by exploiting the tropism of existing serotypes of human adenoviruses.  相似文献   

20.
Production of adenovirus vector for gene therapy   总被引:20,自引:0,他引:20  
The field of gene therapy is rapidly expanding with a major focus on the treatment of cancer. Replication-defective adenoviruses are vectors of choice for delivering corrective genes into human cells. Major efforts are directed to design new generations of adenoviral vectors that feature reduced immunogenicity and improved targeting ability. However, the production of adenoviral vectors for gene therapy applications faces a number of challenges that limit the availability of high quality material at the early stages of research and development in the gene therapy field. Moreover, very few papers have been published on the subject and information on large-scale production methods are only available through specialized conference proceedings. This review outlines the problems associated with mass production of adenovirus vectors and describes research efforts by a number of groups who have contributed to optimize production methods. Better understanding of the adenovirus infection and replication kinetics as well as better understanding of complementing cell line physiology and metabolism greatly contributed to improving vector titers and volumetric productivity at higher cell densities. Also, the critical aspect of viral vector quantitation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号