首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p21(Cip1/WAF1) (p21), a p53-inducible protein, is a critical regulator of cell cycle and cell survival. p21 binds to and inhibits both the DNA synthesis regulator proliferating cell nuclear antigen and cyclin A/E-CDK2 complexes. Recently, p21 has also been shown to be a positive regulator of cell cycle progression as p21 is necessary for the assembly and activation of cyclin D1-CDK4/6 complexes. Furthermore, elevated p21 protein levels have been observed in various aggressive tumors as well as linked to chemoresistance. Here we demonstrate that p21 is directly phosphorylated by AKT/PKB, a survival kinase that is hyperactivated in many late stage tumors. Two sites (Thr(145) and Ser(146)) in the carboxyl terminus of p21 are phosphorylated by AKT/PKB in vitro and in vivo. Phosphorylation of Thr(145) inhibits PCNA binding, whereas phosphorylation of Ser(146) significantly increases p21 protein stability. Glioblastoma cell lines with activated AKT/PKB show enhanced p21 stability, and they are more resistant to taxol-mediated toxicity. Finally, AKT/PKB controls the assembly of cyclin D1-CDK4 complexes through modulation of p21 and cyclin D1 levels. These data imply that enhanced levels of p21 in tumors are due, in part, to phosphorylation by activated AKT/PKB. Furthermore, they suggest that one mechanism of AKT/PKB regulation of tumor cell survival and/or proliferation is to stabilize p21 protein.  相似文献   

2.
Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation.  相似文献   

3.
p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.  相似文献   

4.
5.
Pim-2 kinase is one of the three highly conserved Pim family members which are known to be involved in cell survival and cell proliferation. Here we demonstrate that like Pim-1, Pim-2 also phosphorylates the cell cycle inhibitor p21Cip1/WAF1 (p21) on Thr145 in vitro and in vivo. Overexpression of Pim-2 in HCT116 cells leads to the increased stability of p21 and results in enhanced levels of both exogenous and endogenous p21 proteins. Knockdown of Pim-2 expression via siRNA results in reduced level of endogenous p21, indicating that like Pim-1, Pim-2 is another legitimate p21 kinase. However, Pim-2 has no influence on the nuclear localization of p21 in HCT116 cells. In addition, Pim-2 is able to arrest the cell cycle at G1/S phase and inhibit cell proliferation through phosphorylation of p21 in HCT116 cells. These data suggest that Pim-2 phosphorylation of p21 enhances p21's stability and inhibits cell proliferation in HCT116 cells.  相似文献   

6.
The molecular and biochemical mode of cell death of dopaminergic neurons in Parkinson's disease (PD) is uncertain. In an attempt at further clarification we studied the effects of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on dopaminergic PC12 cells. In humans and nonhuman primates MPTP/MPP+ causes a syndrome closely resembling PD. MPP+ toxicity is thought to be mediated by the block of complex I of the mitochondrial electron transport chain. Treatment of undifferentiated PC12 cells with MPP+ primarily inhibited proliferation of PC12 cells and secondarily led to cell death after the depletion of all energy substrates by glycolysis. This cell death showed no morphological characteristics of apoptosis and was not blocked by treatment with caspase inhibitors. The inhibition of cell growth was not dependent on an inhibition of complex I activity since MPP+ also inhibited cell proliferation in SH-SY5Y cells lacking mitochondrial DNA and complex I activity (p0 cells). As shown by flow cytometric analysis, MPP+ induced a block in the G0/G1 to S phase transition that correlated with increased expression of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) and growth arrest. Since treatment with 1 microM MPP+ caused apoptotic cell death in p21(WAF1/Cip1)-deficient (p21(-/-)) but not in parental (p21(+/+)) mouse embryo fibroblasts, our data suggest that in an early phase MPP+-induced p21(WAF1/Cip1) expression leads to growth arrest and prevents apoptosis until energy depletion finally leads to a nonapoptotic cell death.  相似文献   

7.
8.
9.
Lithium is the most widely prescribed mood stabilizer, but the precise molecular mechanisms underlying its therapeutic function are not yet fully elucidated. Recent preclinical and clinical evidence indicates its neuroprotective and neurotrophic effects. As a tight coupling of function and metabolism in the central nervous system between glial cells and neurons has recently been detected, lithium's effect on glial cells may participate also in the total beneficial effects of this drug. The aim of the present study was to analyze molecular mechanisms induced in human glioblastoma A1235 cells by the treatment with lithium, especially its influence on the expression of apoptosis-related genes. Lower levels of lithium (0.5 mmol/L and 2 mmol/L) did not cause any cytotoxicity or changes in the cell cycle phase distribution following 72 h incubation. However, a higher dose (20 mmol/L) was cytostatic for glioblastoma cells, and caused accumulation of cells in G2/M phase of the cell cycle. The treatment with lithium did not alter the levels of Bcl-2 or procaspase-3 and did not cleave PARP, but increased the levels of p21WAF/Cip1 and survivin. Thus, increased expression of p21WAF/Cip1 (a protein with antiapoptotic function), and survivin (a protein that supports the growth of cells by suppression of apoptosis and promotion of cell proliferation) may be the early events in the long-term cell response to lithium that are involved in the beneficial effects of this drug.  相似文献   

10.
Currently, some controversy exists regarding the precise role of 15-lipoxygenase-1 (15-LOX-1) in colorectal carcinogenesis and other aspects of cancer biology. The aim of this study was to evaluate the effect of 15-LOX-1 on p21 (Cip/WAF 1) expression and growth regulation in human colon carcinoma cells. The effect of 13-S-hydroxyoctadecadienoic acid (HODE), a product of 15-LOX-1, on p21 (Cip/WAF 1) expression was evaluated in Caco-2 cells treated with sodium butyrate (NaBT) and/or nordihydroguaiarectic acid (NDGA), a LOX inhibitor. The effect of transfecting HCT-116 cells with 15-LOX-1 was also examined. NaBT-induced p21 (Cip/WAF 1) expression was enhanced by treatment with NDGA and 13-S-HODE reversed NaBT-induced p21 (Cip/WAF 1) expression in Caco-2 cells. Overexpression of 15-LOX-1 induced extracellular signal-related kinase (ERK) 1/2 phosphorylation, decreased p21 (Cip/WAF 1) expression, and increased HCT-116 cell growth. Treatment with NDGA decreased ERK 1/2 phosphorylation, and increased p21 (Cip/WAF 1) expression in 15-LOX-1 overexpressing HCT-116 cells. Our experimental results support the hypothesis that 15-LOX-1 may have "pro-neoplastic" effects during the development of colorectal cancer.  相似文献   

11.
12.
Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase   总被引:5,自引:0,他引:5  
The serine/threonine kinase, Pim-1, appears to be involved in regulating proliferation, differentiation and cell survival of lymphoid and myeloid cells. In this study, we have found that amino acid residues 140-147 (RKRRQTSM) at the C-terminal end of p21(Cip1/WAF1), a cyclin-dependent kinase (CDK) inhibitor, constitute an ideal phosphorylation consensus sequence for Pim-1. We demonstrate that Pim-1 efficiently phosphorylates this peptide sequence as well as the p21 protein in vitro. We also demonstrate by pull-down assay and by immunoprecipitation that Pim-1 associates with p21. During phorbol ester-induced differentiation of U937 cells, both Pim-1 and p21 expression levels increase with Pim-1 levels increasing in both the nucleus and cytoplasm while p21 remains primarily cytoplasmic. Co-transfection of wild type p21 with wild type Pim-1 results in cytoplasmic localization of p21 while co-transfection of wild type p21 with kinase dead Pim-1 results in nuclear localization of p21. Consistent with the results from the phosphoamino acid assay, Pim-1 phosphorylates transfected p21 only on Thr(145) in p21-deficient human fibroblasts and this phosphorylation event results in the cytoplasmic localization of p21. These findings demonstrate that Pim-1 associates with and phosphorylates p21 in vivo, which influences the subcellular localization of p21.  相似文献   

13.
Wang W  Nacusi L  Sheaff RJ  Liu X 《Biochemistry》2005,44(44):14553-14564
Multiple proteolytic pathways are involved in the degradation of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1). Timed destruction of p21(Cip1/WAF1) plays a critical role in cell-cycle progression and cellular response to DNA damage. The SCF(Skp2) complex (consisting of Rbx1, Cul1, Skp1, and Skp2) is one of the E3 ubiquitin ligases involved in ubiquitination of p21(Cip1/WAF1). Little is known about how SCF(Skp2) recruits its substrates and selects particular acceptor lysine residues for ubiquitination. In this study, we investigated the requirements for SCF(Skp2) recognition of p21(Cip1/WAF1) and lysine residues that are ubiquitinated in vitro and inside cells. We demonstrate that ubiquitination of p21(Cip1/WAF1) requires a functional interaction between p21(Cip1/WAF1) and the cyclin E-Cdk2 complex. Mutation of both the cyclin E recruitment motif (RXL) and the Cdk2-binding motif (FNF) at the N terminus of p21(Cip1/WAF1) abolishes its ubiquitination by SCF(Skp2), while mutation of either motif alone has minimal effects, suggesting either contact is sufficient for substrate recruitment. Thus, SCF(Skp2) appears to recognize a trimeric complex consisting of cyclin E-Cdk2-p21(Cip1/WAF1). Furthermore, we show that p21(Cip1/WAF1) can be ubiquitinated at four distinct lysine residues located in the carboxyl-terminal region but not two other lysine residues in the N-terminal region. Any one of these four lysine residues can be targeted for ubiquitination in the absence of the others in vitro, and three of these four lysine residues are also ubiquitinated in vivo, suggesting that there is limited specificity in the selection of ubiquitination sites. Interestingly, mutation of the carboxyl-terminal proline to lysine enables ubiquitin conjugation at the carboxyl terminus of the substrate both in vitro and in vivo. Thus, our results highlight a unique property of the ubiquitination enzymatic reaction in that substrate ubiquitination site selection can be remarkably diverse and occur in distinct spatial areas.  相似文献   

14.
15.
The cyclin-dependent kinase inhibitor p21(WAF1/Cip1) plays a central role in a spatial and temporal balance of epidermal keratinocyte proliferation and growth arrest. However, what controls p21 expression in keratinocytes remains uncertain. Hypoxia-inducible factor 1alpha (HIF-1alpha) does not only express a variety of genes essential for hypoxic adaptation, but also up-regulates p21 so as to slow down cell cycle under hypoxic conditions. In the present study, we examined the role of HIF-1alpha in p21-mediated growth arrest of keratinocyte. Keratinocyte proliferation was arrested in the G1 phase at a high cell density. p21 was also up-regulated in a cell density-dependent manner and was found to be highly expressed in epidermal keratinocytes of normal human skins. In addition, in the same specimens and cells, we noted robust HIF-1alpha expression. HIF-1alpha siRNAs inhibited p21 expression and released the G1 arrest. In vivo, moreover, the intradermal injection of HIF-1alpha siRNA attenuated p21 expression in rat epidermis and induced skin hyperplasia. Mechanistically, we propose that the production of mitochondrial reactive oxygen species and the activation of the MEK/ERK pathway are involved in the HIF-1alpha stabilization in keratinocytes. These results imply that HIF-1alpha functions as an up-stream player in the p21-mediated growth arrest of keratinocytes.  相似文献   

16.
17.
18.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

19.
20.
Protein kinase B (PKB, also called Akt) is known as a serine/threonine protein kinase. Some studies indicate that the Akt signalling pathway strongly promotes G2/M transition in mammalian cell cycle progression, but the mechanism remains to be clarified, especially in the fertilized mouse egg. Here, we report that the expression of Akt at both the protein and mRNA level was highest in G2 phase, accompanied by a peak of Akt activity. In addition, the subcellular localization of p21(Cip1/WAF1) has been proposed to be critical in the cell cycle. Hence, we detected the expression and localization of p21(Cip1/WAF1) after injecting fertilized mouse eggs with Akt mRNA. In one-cell stage fertilized embryos microinjected with mRNA coding for a constitutively active myristoylated Akt (myr-Akt), p21(Cip1/WAF1) was retained in the cytoplasm. Microinjection of mRNA of kinase-deficient Akt(Akt-KD) resulted in nuclear localization of p21(Cip1/WAF1) . Meanwhile, microinjection of different types of Akt mRNA affected the phosphorylation status of p21(Cip1/WAF1) . However, there was no obvious difference in the protein expression of p21(Cip1/WAF1) . Therefore, Akt controls the cell cycle by changing the subcellular localization of p21(Cip1/WAF1) , most likely by affecting the phosphorylation status of p21(Cip1/WAF1) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号