首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In about 10% of pregnancies overall, the fetus discharges meconium (its bowel contents) into the amniotic fluid during labour. In about 10% of cases where meconium is passed, the fetus gasps, inhaling the sticky meconium into the upper respiratory tract. After birth, the meconium blocks the air passages in the lungs, impairing gas exchange — meconium aspiration syndrome (MAS). Up to 20% of infants suffering from MAS die and recently published studies have shown a long-term effect of MAS in causing cough and wheeze. The risk of meconium aspiration is thought to be increased by intrauterine hypoxia. At present, meconium is only noticed at birth or occasionally when amniotic fluid leaks past the presenting part of the fetus. A method has been developed which measures absolute meconium concentration with a 99% prediction interval of ± 30 gl−1; allows monitoring of the rate of appearance of meconium linearly with a nonlinearity of 5%, and differentiates between meconium and blood. The method uses the ratio of the intensity of back-scattered light from the amniotic fluid at 700 and 415 nm, the latter being near the peak of light absorption by meconium and the former a reference value. The ratio is also affected by the presence of blood. However, blood has specific absorption peaks at 540 and 575 nm from which it can be detected (the presence of blood is also a significant abnormality, and is relatively uncommon). The measurement method could easily be integrated into an optical sensor mounted onto an intrauterine probe. The measurement of back-scattered light at 415, 540 and 700 nm would allow continuous monitoring of meconium which could provide valuable information for the study of the pathophysiology of meconium passage in utero during labour and allow preventative measures to be developed.  相似文献   

2.
Meconium aspiration syndrome is a major contributor to neonatal respiratory distress in infants and it has been sporadically recognized in neonatal animals. This investigation was designed to study the short and long term effects of meconium and amniotic fluid in the lungs of neonatal rats. Seven-day-old rats (n = 123) divided in three groups were intratracheally inoculated with saline solution, amniotic fluid or meconium. Rats were euthanatized on 1, 3, 7, 14, 28, 56 and 112 postinoculation days (PID) and the lungs were examined by light microscopy. Saline solution did not induce any change while amniotic fluid elicited only a mild foreign body response which disappeared by PID 14. In contrast, meconium induced an exudative alveolitis characterized by recruitment of neutrophilsn in the bronchoalveolar spaces. Meconium also induced atelectasis, hyperinflation and thickening of alveolar septa all of which had disappeared by PID 14. Starting at PID 7, neutrophils were progressively replaced by macrophages, giant cells, and some fibroblasts. There were sporadic foci of mineralization starting at PID 14 and lasting up to PID 112. Some mineralized foci became lined with cuboidal epithelial cells at PID 28. Meconium was slowly degraded but still evident by PID 112. It was concluded that inoculation of meconium in neonatal rats induces acute microscopic changes typical of meconium aspiration syndrome. The long term lesions induced by meconium consisted of persistent multifocal histiocytic alveolitis and bronchiolitis reaction with occasional foci of calcification.  相似文献   

3.

Background

Meconium fatty acid ethyl esters (FAEE) constitute a biomarker of heavy fetal ethanol exposure. Our objective was to measure meconium FAEE in fetal sheep following daily, relatively moderate-dose ethanol exposure in late gestation, and to evaluate their utility in identifying fetal organ-system injury.

Methods

Pregnant ewes received ethanol (0.75 g/kg; n = 14) or saline (n = 8) via 1-h IV infusion daily during the third trimester equivalent, while additional pregnant sheep served as untreated controls (n = 6). The daily ethanol regimen produced similar maximal maternal and fetal plasma ethanol concentrations of 0.11–0.12 g/dL. Ewes and fetuses were euthanized shortly before term, and meconium was collected and analyzed for FAEE (ethyl palmitate, stearate, linoleate, and oleate).

Results

Meconium total FAEE concentration was significantly higher in ethanol-exposed fetuses compared with controls, and a positive cut-off of 0.0285 nmol total FAEE/g meconium had 93.3% sensitivity and specificity for detecting fetal ethanol exposure. When the studied animals (ethanol-exposed and controls) were classified according to meconium FAEE concentration, FAEE-positive and FAEE-negative groups frequently differed with respect to previously examined pathological endpoints, including nephron endowment, lung collagen deposition, cardiomyocyte maturation, and tropoelastin gene expression in cerebral vessels. Furthermore, in all studied animals as a group (ethanol-exposed and controls combined), meconium FAEE concentration was correlated with many of these pathological endpoints in fetal organs.

Conclusions

We conclude that, in fetal sheep, meconium FAEE could serve as a biomarker of daily ethanol exposure in late gestation and could identify fetuses with subtle ethanol-induced toxic effects in various organs. This study illustrates the potential for using meconium FAEE to identify neonates at risk for dysfunction of major organs following in-utero ethanol exposure that does not result in overt physical signs of ethanol teratogenicity.  相似文献   

4.
Meconium aspiration syndrome is a cause of significant morbidity and mortality in the perinatal period and has been implicated in the pathogenesis of airway dysfunction. In this study, we developed a murine model to evaluate the effects of meconium aspiration on airway physiology and lung cellular responses. Under light anesthesia, BALB/c mice received a single intratracheal instillation of meconium or physiological saline. Respiratory mechanics were measured in unrestrained animals and expressed as percent increase in enhanced pause to increasing concentrations of methacholine (MCh). Furthermore, we assessed the changes in cells and cytokines into the bronchoalveolar lavage fluid (BALF). We found meconium aspiration produced increased airway responsiveness to MCh at 7 days. These functional changes were associated with lymphocytic/eosinophilic inflammation, goblet cell metaplasia, and increased concentrations of IL-5 and IL-13 in the BALF. Our findings suggest meconium aspiration leads to alterations of airway function, lung eosinophilia, goblet cell metaplasia, and cytokine imbalance, thus providing the first evidence of meconium-induced airway dysfunction in a mouse model.  相似文献   

5.
Meconium aspiration syndrome has been for many years an important cause of neonatal respiratory distress in newborn babies and sporadically reported in animals. This investigation was designed to study the ultrastructural and morphometric changes in the lungs of neonatal rats following the intratracheal inoculation of meconium. Seven-day-old Fischer-344 rats (n = 24) were randomly allocated in two groups. One group was intratracheally inoculated with saline solution and the second group received homologous meconium. Neonates were euthanatized at 1, 3 and 7 postinoculation days (PID) and lungs were examined by light and electron microscopy. Saline solution did not induce any ultrastructural changes in the lung. In contrast, meconium induced deciliation, recruitment of neutrophils and pulmonary alveolar macrophages to the bronchoalveolar space, intravascular sequestration of neutrophils and aggregation of platelets at PID 1 and 3. Other ultrastructural changes at PID 1 and 3 included interstitial edema and escape of red cells and fibrin into the alveolar space and interstitium. Interstitial edema and sequestration of neutrophils were responsible for the significant increase in thickness of alveolar septa. At PID 7 there was hyperplasia and enlargement of type II pneumocytes as well as interstitial proliferation of mesenchymal cells with intra-alveolar fibrosis. It was concluded that intratracheal inoculation of meconium in neonatal rats induces acute ultrastructural changes followed by a reparative response.  相似文献   

6.
Fetal exposure to drugs has many adverse effects upon the neonate including low birthweight, small head size and an increased risk of miscarriage and death. Correct diagnosis of drug use during pregnancy is essential if the child is to receive specialized treatment and care, which will aid in learning and behavioral development. Diagnosis will also help in the prevention of subsequent drug-exposed children being born to the same mother. Meconium is the first fecal material excreted by the newborn and is an excellent depository for drugs to which the fetus has been exposed. Its analysis is widely accepted in the scientific and medical communities since it has several advantages over urinalysis, including providing a longer historical record of drug exposure and easier collection. Various drugs and their metabolites have been detected in meconium, however, the metabolic profile of drugs in meconium differs from that of neonatal and/or maternal urine. This article addresses the determination of cocaines, amphetamines, opiates, cannabinoids, phencyclidine, nicotine and methadone in meconium using several analytical procedures including immunochemical and chromatographic methods.  相似文献   

7.
Meconium fatty acid ethyl esters (FAEEs) are currently used as biomarkers to detect heavy prenatal alcohol exposure. We introduce a novel technique to quantify FAEEs in meconium using headspace-solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC–MS). This method improves on previous approaches by decreasing sample preparation time, eliminating the need for organic solvents, and reducing the required sample size. Using 50 mg of meconium, the detection limits of FAEEs ranged from 0.05 to 0.16 nmol/g and had good reproducibility making it ideal for routine analysis of clinical samples.  相似文献   

8.
Light-emitting diodes (LEDs) were used as the sole light source in continuous culture of the green alga Chlorella pyrenoidosa. The LEDs applied show a peak emission at 659 nm with a half-power bandwidth of 30 nm. Selection of this wavelength range, which is optimal for excitation of chlorophylls a and b in their "red" absorption bands makes all photons emitted potentially suitable for photosynthesis. No need for additional supply of blue light was found. A standardized panel with 2 LEDs cm(-2) fully covered one side of the culture vessel. At standard voltage in continuous operation the light output of the diode panel appeared more than sufficient to reach maximal growth. Flash operation (5-mus pulse duration) enables potential use of higher operating voltages which may render up to three times more light output. Flat airlift fermentor-type continuous culture devices were used to estimate steady state growth rates of Chlorella pyrenoidosa as a function of the light flux (micromol photons x m(-2) x s(-1)) and the flashing frequency of the light-emitting diodes (which determines the duration of the dark "off" time between the 5-micros "on" pulses). At the fixed voltage and turbidostat setting applied a 20-kHz frequency, which equals dark periods of 45 mus, still permitted the maximum growth rate to become nearly reached. Lower frequencies fell short of sustaining the maximal growth rate. However, the light flux decrease resulting from lowering of the flash frequency appeared to reduce the observed growth rates less than in the case of a similar flux decrease with light originating from LEDs in continuous operation. Flash application also showed reduction of the quantum requirement for oxygen evolution at defined frequencies. The frequency domain of interest was between 2 and 14 kHz. LEDs may open interesting new perspectives for studies on optimization of mixing in mass algal culture via the possibility of separation of interests in the role of modulation on light energy conversion and saturation of nutrient supply. Use of flashing LEDs in indoor algal culture yielded a major gain in energy economy in comparison to luminescent light sources. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
A liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC-APCI-MS/MS) method for quantification of 10 amphetamine-related analytes in 1g meconium is presented. Specimen preparation included homogenization and solid-phase extraction. Two multiple reaction monitoring transitions were monitored per analyte. Ten and 1 microL injection volumes permitted quantification up to 10,000 ng/g, with sufficient sensitivity to quantify minor metabolites. Lower limits of quantification ranged from 1.25 to 40 ng/g. Precision was less than 14.2%, with accuracy between 79 and 115%. Meconium from a methamphetamine-exposed neonate was analyzed. Metabolites p-hydroxymethamphetamine, norephedrine and 4-hydroxy-3-methoxymethamphetamine were identified in meconium for the first time.  相似文献   

10.
The fluorescence of a fermentation culture was studied for its application as an estimator of biomass concentration. The measurement was obtained by irradiating the culture with ultraviolet light (366 nm) through a glass window and detecting fluorescent light at the window surface at 460 nm. It was estimated that over one-half of the fluorescent material was intercellular reduced nicotinamide adenine dinucleotide, with the remainder being reduced nicotinamide adenine dinucleotide phosphate and other unidentified intercellular and extracellular fluorophores. The culture fluorescence was found to be a function of biomass concentration, together with environmental factors, which presumably act at the cellular metabolic level to modify intercellular reduced nicotinamide adenine dinucleotide pools (e.g., dissolved oxygen tension, energy substrate concentration, and inhibitors). When these environmental conditions were controlled, a linear relationship was obtained between the log of the biomass concentration and the log of the fluorescence. Under these conditions, this relationship has considerable potential as a method to provide real-time biomass concentration estimates for process control and optimization since the fluorescence data is obtained on line. When environmental conditions are variable, the fluorescence data may be a sensitive index of overall culture activity because of its dependence on intercellular reduced nicotinamide adenine dinucleotide reserves and metabolic rates. This index may provide information about the period of maximum specific productivity for a specific microbial product.  相似文献   

11.
Meconium aspiration syndrome (MAS) is common among newborn children but its mechanism is unclear. The syndrome is known to produce a strong inflammatory reaction in the lungs resulting in massive cell death. In this work we studied lung cell death by apoptosis after meconium aspiration in forty two-week-old rabbit pups. Analyzing lung samples by ISEL-DNA end labeling demonstrated the specific spread of apoptotic bodies throughout the lungs. These bodies were shrunken and smaller in size compared to normal cells and many of them were lacking cell membranes. About 70% of all apoptotic bodies were found among the airway epithelium cell eight hours after meconium instillation. In comparison, among lung alveolar cells, only about 20% cells were apoptotic in the same animals. In meconium-treated lungs and A549 cells, a significant increase of angiotensinogen mRNA and Caspase-3 expression were observed. The pretreatment of cells with Caspase-3 inhibitor ZVAD-fmk significantly inhibited meconium-induced lung cell death by apoptosis. These findings demonstrate the apoptotic process in meconium-instilled lungs or A549 cells in culture. Our results show lung airway epithelial and A549 cell apoptosis after meconium instillation. We suggest that studies of lung airway epithelial cell death are essential to understanding the pathophysiology of MAS and may present a key point in future therapeutic applications.  相似文献   

12.
The hemodynamic effects of periodic acceleration (pG(z)), induced in the spinal axis with noninvasive motion ventilation (NIMV), were studied in a piglet model of pulmonary hypertension associated with meconium aspiration. Animals (n = 12) were anesthetized, paralyzed, intubated, and supported by conventional mechanical ventilation (CMV). Thirty minutes after tracheal instillation of meconium solution (6 ml/kg), either CMV (n = 6) was continued or NIMV (n = 6) was initiated. Changes in systemic and pulmonary hemodynamics and arterial blood gases were tracked for 2 h after aspiration. Thermodilution, cardiac output, and heart rate were not significantly different after meconium aspiration in the pG(z) group relative to the CMV controls. Aortic pressure and systemic vascular resistance were significantly lower (approximately 30%) after meconium aspiration in NIMV animals relative to CMV animals. Pulmonary arterial pressure and pulmonary vascular resistance were also significantly lower, by 100%, after aspiration of meconium in the NIMV animals compared with the CMV controls. Meconium aspiration significantly decreased total respiratory compliance by approximately 50% and increased total respiratory resistance by approximately 100% in both CMV and NIMV animals, but such alterations did not differ between the two groups. Both CMV and NIMV satisfactorily supported ventilation in these paralyzed animals. In conclusion, NIMV through pG(z) in the spinal axis decreased systemic and pulmonary vascular resistance in piglets after meconium aspiration.  相似文献   

13.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

14.
This work is devoted to excimer lamp efficiency optimization by using a homogenous discharge model of a dielectric barrier discharge in a Ne?Xe mixture. The model includes the plasma chemistry, electrical circuit, and Boltzmann equation. In this paper, we are particularly interested in the electrical and kinetic properties and light output generated by the DBD. Xenon is chosen for its high luminescence in the range of vacuum UV radiation around 173 nm. Our study is motivated by interest in this type of discharge in many industrial applications, including the achievement of high light output lamps. In this work, we used an applied sinusoidal voltage, frequency, gas pressure, and concentration in the ranges of 2–8 kV, 10–200 kHz, 100–800 Torr, and 10–50%, respectively. The analyzed results concern the voltage V p across the gap, the dielectric voltage V d, the discharge current I, and the particles densities. We also investigated the effect of the electric parameters and xenon concentration on the lamp efficiency. This investigation will allow one to find out the appropriate parameters for Ne/Xe DBD excilamps to improve their efficiency.  相似文献   

15.
Meconium has become the specimen of choice for determining fetal exposure to drugs of abuse, but its physical complexity can cause interferences from matrix effects. A new method to determine 9-carboxy-11-nor-Delta(9)-THC (9-THCA) and 11-hydroxy-Delta(9)-THC (11-OH-THC) using two-dimensional (2D) GC-MS was developed to reduce interferences and carryover. The method was validated using 70 spiked samples prepared in drug-free meconium and 46 residual patient specimens that were confirmed to contain cannabinoids. Ten patient specimens that failed to confirm due to interferences using the previous GC-MS method were analyzed using the new 2D method and 9-THCA was quantitated in all ten samples. The 2D GC-MS method improved chromatography which significantly reduced interferences and carryover when compared to the previous GC-MS method.  相似文献   

16.
Meconium aspiration syndrome (MAS) frequently results in inactivation of surfactant, persistent pulmonary hypertension (PPHN) and respiratory failure among newborn infants. Inflammation and inflammatory mediators play an important role in MAS. Since alveolar macrophages are thought to be very important cells in the pathogenesis of various inflammatory diseases, we evaluated whether meconium could stimulate rat alveolar macrophages to generate platelet-activating factor (PAF) and tumor necrosis factor (TNF)-alpha in vitro. We also examined the response to A23187 (calcium ionophore), 1-0-Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (synthetic PAF) and dexamethasone on meconium-induced release of PAF and TNF-alpha. PAF and TNF-alpha concentrations from supernatant fluid were measured after high-performance liquid chromatography purification by specific radioimmunoassay, and TNF-alpha concentrations were determined by using an enzyme-linked immunosorbent assay. Our results showed that alveolar macrophages exposed to meconium could enhance PAF and TNF-alpha production in a dose (0.1, 1, 5 and 10%, P<0.01)-dependent way. In the presence of A23187, the capability of meconium to stimulate PAF production was further enhanced in the supernatant fluids. Furthermore, treatment with synthetic PAF significantly increased the generation of TNF-alpha in response to meconium. On the other hand, dexamethasone effectively inhibited both PAF and TNF-alpha production stimulated by 5% meconium (P<0.01, P<0.01; respectively). We suggest that alveolar macrophages and PAF, TNF-alpha play an important role in the pathogenesis of lung injury and severe complications in MAS. Furthermore, the protective effect of glucocorticoids in MAS could be due, at least in part, to a suppression of PAF and TNF-alpha generation.  相似文献   

17.
18.
BACKGROUND: The objective of this study was a review of published studies utilizing measurement of fatty acid ethyl esters (FAEE) in meconium as biomarkers for prenatal alcohol exposure. METHODS: We completed a literature search of PubMed using the terms meconium, fatty acid ethyl esters, biomarkers, and prenatal alcohol exposure. We included only peer reviewed studies utilizing analysis of meconium for the presence of FAEE in humans through the year 2007. RESULTS: We found 10 articles reporting on original research examining the relationship of FAEE from meconium and prenatal alcohol exposure (PAE). The 10 articles used six different PAE assessment strategies and four different analytical techniques for determining FAEE endpoints. The articles included 2,221 subjects (range 4 to 725) with 455 (20.5%) subjects identified as exposed using the methods stated in the articles. FAEE levels above the studies' respective cutoffs were reported for 502 (22.6%) subjects. CONCLUSIONS: The accurate identification of alcohol‐exposed pregnancies represents a significant challenge in the development of FAEE detection cutoffs to maximize the sensitivity and specificity of the test. We present several options for the improvement of exposure assessment in future studies of FAEE as biomarkers for PAE. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
On-line, "real-time" monitoring of product concentration is important for mammalian cell culture fermentation. The continuous measurement of monoclonal antibodies allows for instantaneous determination of cell productivity and effective manipulation of the fermentor operating conditions for optimal production. This article will present the evaluation and application of a BioCad/RPM system (Per Septive Biosystems) for rapid analysis of lgG concentration for hybridoma cell cultivation. Several commercial crossflow filtration devices are tested for low protein retention and fouling properties. A protein G column is used successfully for analyzing about 400 samples of lgG(1), without significant loss in separation efficiency. The Immuno Detection system is integrated into a computer-controlled 15-L fermentor. This fermentor could be operated in batch and perfusion modes with cell densities up to 20 million cells/mL. A continuous cell-free sample stream obtained by a hollow fiber filter system is introduced to the BioCad/RPM for analysis. The speed of this system allows for real-time monitoring even at high densities with fast dynamics. A murine hybridoma cell (A10G10) is cultivated in batch and continuous reactors and antibody concentration is measured continuously with complete sterility. The results are compared to offline measurements with good agreement. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
We report in this paper the presence of fluorescence bands of tryptophan and tyrosine solutions centered above 550 nm. This long-wavelength fluorescence is of much lower intensity, (0.4-2.7)%, than the UV fluorescence of these aromatic aminoacids. The basic characteristic of these fluorescence bands are: (a) tyrosine: lambda em = 600 nm with two excitation peaks centered at 453 nm and 550 nm (b) tryptophan: lambda em = 675 nm with two excitation peaks centered at 455 and 560 nm. It has been found that irradiation of tyrosine solutions with a potent UV lamp promotes an important increase of absorption at 310 nm and above 400 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号