首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim.  相似文献   

2.
Cyrtomidictyum Ching and Cyrtogonellum Ching are two eastern Asian endemic genera whose taxonomic affinities and phylogenetic relationships have long been controversial. The main uncertainty surrounds the separation of the two genera from the species-rich genus Polystichum. Here we present a phylogenetic study focusing on the phylogenetic relationships of these polystichoid ferns. We reconstructed the relationships based on DNA sequence variation in four chloroplast genome regions, rbcL, atpB, and the intergenic spacers (IGS) rps4-trnS and trnL-trnF. Maximum likelihood and Bayesian inference analyses confirm earlier results that were based on less comprehensive taxon sampling and either only a single gene (rbcL) or two IGS (rps4-trnS and trnL-trnF). Cyrtomidictyum is the sister of the clade of polystichoid ferns that includes Cyrtogonellum, Cyrtomium subser. Balansana and three sections of Polystichum. Cyrtogonellum groups with several species of Polystichum, and constitutes the sister taxon to Polystichum sect. Sphaenopolystichum. We support the recognition of Cyrtomidictyum as circumscribed initially, rather than expansion of the genus to include either several Polystichum species or Cyrtogonellum, some Polystichum and Cyrtomium species. The monophyly of Cyrtomidictyum is supported by morphological characters such as once-pinnate leaves, free venation, prolongated leaf apices, and exindusiate sori. Two synapomorphic indels in the chloroplast genome, one 15-bp deletion in rps4-trnS, and one 3-bp insertion in trnL-trnF further differentiate Cyrtomidictyum from other polystichoid ferns. The close affinity of Cyrtogonellum to section Sphaenopolystichum of Polystichum s.s. is highly supported by molecular data. However, no shared morphological characters or molecular indels have been detected, although the distinctness of Cyrtogonellum is shown by a 13-bp insertion in the rps4-trnS alignment.  相似文献   

3.
A selection of Boraginaceae genera was used to obtain a framework for the phylogenetic position of some tribes belong to subfamily Boraginoideae and genera within tribe Eritrichieae (Heterocaryum, Rochelia, Eritrichium, Lappula, Lepechiniella, and Asperugo) and related species. Our results were produced on the basis of nrDNA ITS and cpDNAtrnL-F sequences. The combined nrDNA ITS trnL-F data confirm four main clades of Boraginoideae comprising Echiochileae, Boragineae, Lithospermeae, and Cynoglosseae s. l. (including Eritrichieae, Cynoglosseae s. str., and Myosotideae). The tribe Eritrichieae itself at the current status is paraphyletic; some members, for example Asperugo procumbens, Lepechiniella inconspicua, Myosotidium hortensia, and Cryptantha flavoculata are placed out of the core tribe Eritrichieae. The genus Heterocaryum is monophyletic and allied with a subclade of genera Lappula, Lepechiniella, Eritrichium, and Rochelia. Rochelia is monophyletic, but Eritrichium and Lappula are non-monophyletic. Lepechiniella is nested among a group of Lappula species.  相似文献   

4.
5.
6.
The Malva alliance is a well-defined group with extensive morphological homoplasy. As a result, the relationships among the taxa as well as the evolution of morphological traits have remained elusive and the traditional classifications are highly artificial. Using five molecular markers (nuclear ITS, plastid matK plus trnK, ndhF, trnL-trnF, psbA-trnH), we arrived at a phylogenetic hypothesis of this group, the genera Alcea, Althaea and Malvalthaea being studied here for the first time with molecular data. Althaea and, in particular, Lavatera and Malva are highly polyphyletic as currently circumscribed, because their diagnostic characters, the number and degree of fusion of the epicalyx bracts, evolve in a highly homoplasious manner. In contrast, fruit morphology largely agrees with the molecularly delimited groups. Hybrid origins confirmed for the genus Malvalthaea and for Lavatera mauritanica and hybridization in the group of ruderal small-flowered mallows underline the importance of reticulate evolution in shaping the history of this group and complicating the interpretation of morphological evolution.  相似文献   

7.
This paper presents the first molecular phylogeny of the genus Hemsleya using nuclear ITS and plastid trnH-psbA, rpl16, and trnL DNA sequences to examine the relationships among Hemsleya species. Phylogenetic relationships were elucidated using a combined analysis of all four datasets, however, the number of parsimony-informative characters was still insufficient to resolve all relationships. Parsimony and Bayesian trees were highly congruent. Twenty-three species of Hemsleya split into two major clades corresponding to two subgenera, i.e., subg. Graciliflorae and subg. Hemsleya. These results are partly in agreement with Li’s sectional classification. However, the molecular data are inconsistent with Li’s classification at the subsectional level. The molecular phylogeny revealed a striking overall correlation between the phylogenetic relationships of the species and their geographical distribution. The Kangdian ancient landmass could be the center of origin of the genus.  相似文献   

8.
A phylogenetic and systematic study of Orius species (Heteroptera: Anthocoridae) from Korea has been conducted using both morphological and molecular characters. Thirty morphological character states were coded for 10 strains of 9 species. Five molecular markers, partial cytochrome c oxidase I (COI), cytochrome b (CytB), 16S rRNA (16S), 18S rRNA (18S), and 28S rRNA (28S), from mitochondrial and nuclear genes, were tested. Phylogenetic analyses based on molecular data were conducted by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic (BP) analyses. Analysis of morphological data was performed using the parsimony programs NONA, and the combined dataset of morphological and molecular data was analyzed using BP analyses. The results of this study indicate that use of COI and CytB enabled relatively effective identification of species, whereas the sequences of 16S, 18S and 28S did not enable identification of closely related species such as Orius minutus and O. strigicollis. We discuss the usefulness of the five molecular markers for determining phylogenetic relationships and identifying the species.  相似文献   

9.
Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA   总被引:1,自引:0,他引:1  
Introns and spacers are a rich and well-appreciated information source for evolutionary studies in plants. Compared to coding sequences, the mutational dynamics of introns and spacers is very different, involving frequent microstructural changes in addition to substitutions of individual nucleotides. An understanding of the biology of sequence change is required for correct application of molecular characters in phylogenetic analyses, including homology assessment, alignment coding, and tree inference. The widely used term “indel” is very general, and different kinds of microstructural mutations, such as simple sequence repeats, short tandem repeats, homonucleotide repeats, inversions, inverted repeats, and deletions, need to be distinguished. Noncoding DNA has been indispensable for analyses at the species level because coding sequences usually do not offer sufficient variability. A variety of introns and spacers has been successfully applied for phylogeny inference at deeper levels (major lineages of angiosperms and land plants) in past years, and phylogenetic structure R in intron and spacer data sets usually outperforms that of coding-sequence data sets. In order to fully utilize their potential, the molecular evolution and applicability of the most important noncoding markers (the trnT–trnF region comprising two spacers and a group I intron; the trnS–G region comprising one spacer and a group II intron in trnG; the group II introns in petD, rpl16, rps16, and trnK; and the atpB–rbcL and psbA–trnG spacers) are reviewed. The study argues for the use of noncoding DNA in a spectrum of applications from deep-level phylogenetics to speciation studies and barcoding, and aims at outlining molecular evolutionary principles needed for effective analysis.  相似文献   

10.
The intrasubfamilial classification of Microdontinae Rondani (Diptera: Syrphidae) has been a challenge: until recently more than 300 out of more than 400 valid species names were classified in Microdon Meigen. We present phylogenetic analyses of molecular and morphological characters (both separate and combined) of Microdontinae. The morphological dataset contains 174 characters, scored for 189 taxa (9 outgroup), representing all 43 presently recognized genera and several subgenera and species groups. The molecular dataset, representing 90 ingroup species of 28 genera, comprises sequences of five partitions in total from the mitochondrial gene COI and the nuclear ribosomal genes 18S and 28S. We test the sister‐group relationship of Spheginobaccha with the other Microdontinae, attempt to elucidate phylogenetic relationships within the Microdontinae and discuss uncertainties in the classification of Microdontinae. Trees based on molecular characters alone are poorly resolved, but combined data are better resolved. Support for many deeper nodes is low, and placement of such nodes differs between parsimony and Bayesian analyses. However, Spheginobaccha is recovered as highly supported sister group in both. Both analyses agree on the early branching of Mixogaster, Schizoceratomyia, Afromicrodon and Paramicrodon. The taxonomical rank in relation to the other Syrphidae is discussed briefly. An additional analysis based on morphological characters only, including all 189 taxa, used implied weighting. A range of weighting strengths (k‐values) is applied, chosen such that values of character fit of the resulting trees are divided into regular intervals. Results of this analysis are used for discussing the phylogenetic relationships of genera unrepresented in the molecular dataset.  相似文献   

11.
The angiosperm family Boraginaceae includes ca. 1600 species distributed among ca. 110 genera. Some floral features are constant within the family, but many vegetative, floral, pollen, and nutlet traits vary. Utilizing 224 species of Boraginaceae and related taxa, five matrices were constructed with various combinations of morphological characters, three chloroplast DNA regions, and one nuclear ribosomal DNA region. Phylogenetic analyses were conducted for these matrices, and patterns of character evolution were examined. Boraginaceae is resolved as monophyletic, with Wellstedia as its sister. Codon is sister to Boraginaceae + Wellstedia. Although most of the investigated morphological characters have a low consistency index, particular character states are synapomorphies for large clades in each of the tribes of the family. In Boraginaceae, the breeding system heterostyly evolved at least 12 times, which is the largest number of origins resolved in any family; therefore Boraginaceae can serve as a model for the evolution and development of heterostyly. Nutlet ornamentation is most diverse in Cynoglosseae and Trichodesmeae, while pollen and floral features are most variable in Boragineae and Lithospermeae. Phylogenetic relationships and patterns of character evolution identified in the present study set the stage for future work creating an updated taxonomic system of Boraginaceae.  相似文献   

12.
Peperomia is with approximately 1,600 species one of the species rich angiosperm genera. Several characters on which current infrageneric classifications are based are influenced by parallel evolution. A well-resolved molecular backbone phylogeny of the genus is needed to address evolutionary questions about morphological traits. Based on separate and combined analyses of a morphological data set and three molecular data sets, phylogenetic relationships within Peperomia are investigated with respect to character evolution. The resulting trees from different datasets are highly congruent. Morphological characters are mapped on a combined molecular tree, visualizing the contrast between previously used homoplastic characters and some newly observed characters, that can be used to delimit monophyletic groups. Length mutational events of the chloroplast dataset are coded and plotted on the respective tree, to test if indels support alternative hypothesis of relationships found in the nuclear datasets as well as the overall performance of indels compared with substitutional mutations. Our findings indicate that length distribution of indels is highest among five and six bp events. Autapomorphic and synapomorphic length mutations are most frequent in both insertions and deletions and are also more frequent independent of the length of the mutation. Concluding, independent of the length, mutations are of phylogenetic importance and should not be disregarded. None of the homoplastic indels turn into synapomorphic indels, supporting the different topology of the nrDNA tree but indicate areas of molecular evolution in favour of length mutations resulting in independent events.  相似文献   

13.
The previously insignificant and small South American subtribe Barnadesiinae of tribe Mutisieae has been shown recently to be ancient within Asteraceae. Due to absence of a 22 kb diagnostic chloroplast inversion, plus other features, this subtribe has been elevated to subfamilial status as Barnadesioideae, now containing 90 species in nine genera. Recent cladistic analyses at the generic and specific levels based on morphology and DNA sequences (ITS and trnL intron) have revealed different relationships among taxa of the subfamily. To better understand these conflicts, we analyze specific morphological features of corollas (shape and vascularization) to develop trends (trees) in these features based on minimal structural change (i.e., morphological parsimony), and to compare these with relationships among genera derived from the two recent cladistic analyses. We define six principal types of corollas in Barnadesioideae (tubular, split, double split, ligulate, subbilabiate and bilabiate) and six principal types of corolla vascularization patterns (combinations of presence or absence of central bundles, fusion of adjacent bundles and fusion of bundles at the apex of corolla lobes). In all features we assume character states in Calyceraceae to be ancestral. In corolla shape, from tubular ancestry, we hypothesize two general evolutionary trends within the subfamily: (1) splitting of the tube, and (2) flattening of the tube. In vascularization of corollas, from an ancestral condition of one central and one lateral bundle in each corolla lobe and all traces fused at the apex, we hypothesize four basic trends: (1) gain or (2) loss of lateral vascular traces in each lobe, (3) loss of the central vein, and (4) loss of fusion of traces in lobe apices. These morphological trends allow tests of the two previous phylogenetic hypotheses by (1) counting step changes (following steps in the morphological network) in the two characters on the two competing phylogenetic trees and (2) constructing an index of morphological advancement for each genus (based on morphological trees of the two characters) and correlating these with cladistic distances within the two phylogenies. Results of both tests reveal the molecular phylogeny to be more compatible with evolutionary inferences from the two morphological features. With Fulcaldea excluded, a highly significant correlation is seen between morphological advancement and cladistic distance in the molecular phylogeny.  相似文献   

14.
15.
The Caucasigenini is an endemic radiation of hygromiid land snails from the Caucasus region. A phylogenetic analysis of morphological characters of the genitalia and the shell showed that the morphological characters are insufficient for resolving the relationships within the Caucasigenini. Convergences of the few parsimony informative characters in other groups of the Hygromiidae demonstrate that these characters are not reliable indicators of phylogenetic relationships. Phylogenetic analyses of sequences of cox1, 16S rDNA, 5.8S rDNA, ITS2 and 28S rDNA revealed several well‐supported groups. The relationships among these groups could not be resolved. It is likely that these groups originated in a rapid radiation during the uplift of the Caucasus. Based on the molecular phylogeny, we propose a new classification of the species of the Caucasigenini and establish a new genus, Lazicana gen. n.  相似文献   

16.

Background and Aims

Species'' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species'' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species'' identification.

Methods

Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes.

Key Results

Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularisC. madida’ and ‘C. ferdinandianaC. neowiedii’ species'' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands.

Conclusions

The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids.Key words: Chromosome number, Christensonella, Cymbidieae, cytotaxonomy, fluorochrome staining, Maxillaria, Maxillariinae, molecular phylogenetics, species delimitation  相似文献   

17.
Phylogeny and classification of Rosaceae   总被引:3,自引:0,他引:3  
Phylogenetic relationships among 88 genera of Rosaceae were investigated using nucleotide sequence data from six nuclear (18S, gbssi1, gbssi2, ITS, pgip, and ppo) and four chloroplast (matK, ndhF, rbcL, and trnL-trnF) regions, separately and in various combinations, with parsimony and likelihood-based Bayesian approaches. The results were used to examine evolution of non-molecular characters and to develop a new phylogenetically based infrafamilial classification. As in previous molecular phylogenetic analyses of the family, we found strong support for monophyly of groups corresponding closely to many previously recognized tribes and subfamilies, but no previous classification was entirely supported, and relationships among the strongly supported clades were weakly resolved and/or conflicted between some data sets. We recognize three subfamilies in Rosaceae: Rosoideae, including Filipendula, Rubus, Rosa, and three tribes; Dryadoideae, comprising the four actinorhizal genera; and Spiraeoideae, comprising Lyonothamnus and seven tribes. All genera previously assigned to Amygdaloideae and Maloideae are included in Spiraeoideae. Three supertribes, one in Rosoideae and two in Spiraeoideae, are recognized.  相似文献   

18.
Insertions and deletions (indels) are common in intergenic spacer regions of plastid DNA and can provide important phylogenetic characters for closely related species. For example, a 241-bp plastid DNA deletion in the trnV-UAC/ndhC intergenic spacer region has been shown to have major phylogenetic importance in determining the origin of the cultivated potato. As part of a phylogenetic study of the wild potato Solanum series Piurana group we screened 199 accessions of 38 wild potato species in nine of the 19 tuber-bearing (Solanum section Petota) series that have not been examined before for indels in the trnV-UAC/ndhC intergenic spacer region. A novel 41 bp deletion (but no 241 bp deletion) was discovered for 30 accessions of three species: S. chiquidenum (5 of 10 accessions), S. chomatophilum (19 of 28), and S. jalcae (6 of 6). Accessions with and without this deletion are found throughout much of the north-south range of all three species in northern and central Peru, but not east of the Marañón River. Multivariate morphological analyses of these 44 accessions showed no morphological associations to the deletion. The results suggest extensive interspecific gene flow among these three species, or a common evolutionary history among species that have never been suggested to be interrelated.  相似文献   

19.
Notoriously slow rates of molecular evolution and convergent evolution among some morphological characters have limited phylogenetic resolution for the palm family (Arecaceae). This study adds nuclear DNA (18S SSU rRNA) and chloroplast DNA (cpDNA; atpB and rbcL) sequence data for 65 genera of palms and characterizes molecular variation for each molecule. Phylogenetic relationships were estimated with maximum likelihood and maximum parsimony techniques for the new data and for previously published molecular data for 45 palm genera. Maximum parsimony analysis was also used to compare molecular and morphological data for 33 palm genera. Incongruence among datasets was detected between cpDNA and 18S data and between molecular and morphological data. Most conflict between nuclear and cpDNA data was associated with the genus Nypa. Several taxa showed relatively long branches with 18S data, but phylogenetic resolution of these taxa was essentially the same for 18S and cpDNA data. Base composition bias for 18S that contributed to erroneous phylogenetic resolution in other taxa did not seem to be present in Palmae. Morphological data were incongruent with all molecular data due to apparent morphological homoplasy for Caryoteae, Ceroxyloideae, Iriarteae, and Thrinacinae. Both cpDNA and nuclear 18S data firmly resolved Caryoteae with Borasseae of Coryphoideae, suggesting that at least some morphological characters used to place Caryoteae in Arecoideae are homoplastic. In this study, increased character sampling seems to be more important than increased taxon sampling; a comparison of the full (65-taxon) and reduced (45- and 33-taxon) datasets suggests little difference in core topology but considerably more nodal support with the increased character sample sizes. These results indicate a general trend toward a stable estimate of phylogenetic relationships for the Palmae. Although the 33-taxon topologies are even better resolved, they lack several critical taxa and are affected by incongruence between molecular and morphological data. As such, a comparison of results from the 45- and 33-taxon trees offers the best available reference for phylogenetic inference on palms.  相似文献   

20.
The genus Spondias belongs to the Anacardiaceae family, with about 18 species, having significant economic and social importance and with some species used in the agricultural industry, however, problems are encountered when trying to identify phylogenetic relationships among the species. The use of DNA barcoding is of importance to this group, allowing species identification at the molecular level and in determining the phylogenetic relationships within the group. The objective of this study is to obtain DNA barcoding and to determine the phylogenetic relationships among the species. For this, DNA from six species of the genus was extracted and amplified by PCR using sequences from the rbcL and matK genes and the trnH-psbA spacer gene, followed by sequencing using the Sanger method. The results show that the matK and rbcL genes cannot be used for DNA barcoding, because their discriminatory level between species is low. On the other hand, trnH-psbA shows a high level of discrimination, allowing most of the species to be identified. However it is not possible to separate Spondias venulosa and Spondias tuberosa. Phylogenetic analysis shows that Spondias mombim and S. tuberosa are distinct “umbucajá” clades, suggesting a non-hybrid origin for “umbucajá”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号