首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
"Allosteric regulation" of calcium-uptake in rat liver mitochondria   总被引:2,自引:0,他引:2  
During investigations of calcium uptake by rat liver mitochondria, at a buffered free calcium concentration of 2 microM, a considerable acceleration of calcium uptake was occasionally observed. From the following experiments it can be concluded that the acceleration occurred when mitochondria had become anaerobic, and hence deenergized, because they had been stored in the refrigerator for a while. Mitochondria which had become transitorily deenergized by blocking the respiratory chain with KCN, rotenone or antimycin showed an accelerated calcium uptake when the membrane potential necessary for calcium uptake was regenerated. This acceleration of calcium uptake was also seen when a potassium diffusion potential was induced by valinomycin in previously deenergized mitochondria. The velocity of calcium uptake in transitorily deenergized mitochondria increased irrespective of the presence of magnesium in the incubation medium. The activation of the Ca uniporter was reversible, and both processes, activation and deactivation, were time-dependent and developed within a time span of minutes. Oligomycin strongly inhibited the deactivation of the uniporter by ATP, hence the membrane potential is intrinsically effective and does not act via ATP. The altered kinetics of the Ca uniporter were responsible for the acceleration of calcium uptake which was measured at low calcium concentration with previously deenergized mitochondria. The dependence of the rate of calcium uptake on the concentration of calcium in the medium is hyperbolic in transitorily deenergized mitochondria [Km = 6.7 microM; V = 455 nmol/(min X mg protein)] and sigmoidal in normal ones. It is additionally independent of the presence of magnesium ions. We found Hill coefficients of 3.47 and 2.94 in experiments with and without magnesium, respectively. Correspondent kinetics, hyperbolic in deenergized and sigmoidal in normal mitochondria, were obtained when calcium uptake was not driven by the system of respiratory chain, but by the potassium diffusion potential induced by valinomycin. The alteration in the kinetics of the Ca uniporter has consequences in the range of physiological calcium levels, but mainly in pathological states of liver cells. These points are discussed.  相似文献   

2.
1. The association of calcium with isolated rat liver mitochondrial membranes under various metabolic conditions was monitored using the fluorescent chelate probe, chlorotetracycline. Chlorotetracycline fluorescence increased markedly during energized calcium uptake in the absence of a permeant anion. Uncoupler and a respiratory chain inhibitor caused a rapid decrease in chlorotetracycline fluorescence when added either before or after calcium. During calcium uptake experiments concentrations of calcium exceeding 100 μM caused a transient fluorescence increase followed by an extensive decrease in fluorescence.

2. Changes in the chlorotetracycline-associated fluorescence of the mitochondrial suspensions were correlated with the uptake of exogenous 45Ca. A positive correlation was observed between fluorescence and energized 45Ca uptake in the absence of permeant anions. Addition of the permeant anion, phosphate, caused an extensive decrease in chlorotetracycline fluorescence but an enhanced uptake of exogenous 45Ca.

3. The interaction of endogenous mitochondrial calcium with the fluorescent chelate probe was studied under a number of experimental conditions using mitochondria labeled during preparation with 45Ca. Endogenous 45Ca was lost rapidly from the mitochondria upon treatment with uncoupler, antimycin A, and A23187. Potassium phosphate and EGTA had no effect on the endogenous calcium as measured by either the 45Ca content of the mitochondria or the fluorescence of the probe.

4. Mitochondria treated with antimycin A lost most of their endogenous 45Ca within 3 min; subsequent energization of the mitochondria resulted in a partial uptake of the released 45Ca but caused nearly a complete return of the chlorotetracycline fluorescence to the original level. Addition of phosphate did not change the fluorescence level but resulted in an almost complete accumulation of the 45Ca previously released.

5. Following this energized uptake of 45Ca, EGTA, p-trifluoromethoxyphenyl hydrazone of carbonyl cyanide, A23187 and calcium chloride all caused a nearly complete loss of the 45Ca from the mitochondria and, with the exception of calcium chloride, caused an extensive decrease in the fluorescence level. Hence, the apparent location and/or properties of the endogenous calcium in this rat liver mitochondrial system were altered significantly by manipulation of the energetic state of the mitochondrial membrane.  相似文献   


3.
As to functional consequences of Ca2+ uptake in isolated rat liver mitochondria, we simultaneously measured 3H2O and [14C]sucrose spaces, monovalent cation distribution, membrane potential and delta pH across the inner membrane, and [32P]phosphate and 45Ca2+ content in parallel incubations of different ionic composition. Without added Ca2+ and phosphate, mitochondrial matrix volume, membrane potential, and delta pH depended on the concentration and permeability of monovalent cations. Despite large differences in membrane potential, maximal Ca2+ uptake was identical under all conditions. Ca2+ uptake never provoked a volume change from which an osmotic active state of mitochondrial Ca2+ could be concluded. If matrix volume shrunk this could be totally accounted for by the loss of alkali ions exchanging for calcium ions. Even phosphate taken up in conjunction with Ca2+ was osmotically silent. Volume increases here occurring if K+ was permeabilized, solely resulted from K+ uptake, though this condition may give rise to irreversible mitochondrial damage with Ca2+ and phosphate release. As mitochondrial Ca2+ is bound, an electro-chemical equilibrium across the membrane is impossible for this ion. This has to be considered in any model describing equilibria of Ca2+ with mitochondria, though present models neglect this state of mitochondrial Ca2+.  相似文献   

4.
Calcium uptake by intact bovine epididymal spermatozoa is not affected by low concentrations (up to 0.75 mM) of the calcium transport blocker verapamil. Under these conditions, calcium transport into sperm mitochondria is highly inhibited. At higher verapamil concentrations (1.0, 1.5 mM), calcium transport into intact sperm is also inhibited, and this inhibition cannot be relieved by disrupting the plasma membrane with filipin. Calcium uptake into intact sperm is highly inhibited by mersalyl and this inhibitory effect can be completely relieved when the plasma membrane is disrupted by filipin. This effect of mersalyl is not dependent on the presence of phosphate in the incubation medium. Phosphate itself, up to 2 mM, enhances calcium uptake into the cells; this effect decreases at higher concentrations and is depressed 57% at 10 mM phosphate. This inhibitory effect of high phosphate concentration can be blocked by mersalyl. It is suggested that the calcium carrier itself and not a phosphate carrier of the plasma membrane is inhibited by mersalyl. It is possible that there is a symporter for calcium and phosphate in the plasma membrane of bovine spermatozoa.  相似文献   

5.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

6.
It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca2+/mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45Ca2+ to follow uptake in the presence of 0.5 to 1.5 microM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake.  相似文献   

7.
The level of cytoplasmic calcium ions appears to be important in the control of murine erythroleukemia (MEL) cell differentiation. Our interest in this study focuses on the relationship between the regulation of calcium concentration and differentiation. We used the fluorescent membrane probe DiOC6 to examine the relationship between MEL cell mitochondria and changes in cytoplasmic calcium levels occurring at the initiation of commitment. Fluorescence microscopy reveals the selective association of DiOC6 with MEL cell mitochondria, where an enhanced fluorescence is observed. Treatment of cells with dimethylsulfoxide (DMSO) or other inducers causes a decrease in mitochondria-associated fluorescence levels that occurs with the initiation of commitment. A decrease in DiOC6 fluorescence is caused by agents that reduce mitochondrial membrane potential, but is only slightly affected by agents that alter plasma membrane potential. Amiloride and EGTA, agents that prevent commitment and inhibit calcium uptake, also prevent the decrease in DiOC6 uptake caused by DMSO. The effect of DMSO on MEL cell mitochondria is mimicked by FCCP, a proton ionophore that dissipates mitochondrial membrane potential. FCCP also caused MEL cell mitochondria to release calcium into the cytoplasm. When MEL cells are treated with DMSO plus FCCP, commitment is initiated without the lag period observed when cells are treated with DMSO alone. These results are consistent with the hypothesis that mitochondrial transmembrane potential is important in the regulation of cytoplasmic calcium levels at the time of commitment of MEL cells to terminal differentiation.  相似文献   

8.
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate. 2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (delta psi) to the Ca2+ concentration show a half-maximal change at less than 10 micron Ca2+ and a saturation above 20 micron Ca2+. 3. Plots relating the initial rate of Ca2+ uptake to delta psi are linear. 4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux. 5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

9.
Karl E.O. Åkerman 《BBA》1978,502(2):359-366
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate.2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (Δψ) to the Ca2+ concentration show a half-maximal change at less than 10 μM Ca2+ and a saturation above 20 μM Ca2+.3. Plots relating the initial rate of Ca2+ uptake to Δψ are linear.4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux.5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

10.
The mechanism of calcium uptake by liver microsomes was investigated using various anions and ionophores. Calcium uptake was shown to be specific to microsomes and unlikely to be due to contamination by plasma membranes by correlation of calcium uptake to the marker enzymes specific for these two fractions. Under the conditions employed, phosphates, sulfate, chloride, acetate, nitrate, thiocyanate, maleate, succinate and oxalate all stimulated calcium uptake by microsomes, but to different degrees. The greatest effect (4-6-fold) was observed with phosphate. On the contrary, phosphate is the only anion that stimulates the plasma membrane calcium uptake to any significant degree. Treatment of isolated microsomes with 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) resulted in inhibition of ATP- and anion-dependent calcium uptake. A lipid-permeable organic acid such as maleate retained its ability to promote calcium uptake in DIDS-treated microsomes. However, a lipophilic anion, such as nitrate, stimulated calcium uptake only in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). In addition, 2 microM valinomycin, when added in the absence or presence of 10 to 100 mM K+, had no stimulatory effect on calcium uptake. These results appear to be consistent with a model in which the active uptake of calcium into microsomes involves electroneutral Ca2+-nH+ exchange.  相似文献   

11.
Calcium concentrations of various pancreatic B cell organelles have been determined by X-ray microanalysis of areas of frozen sections of unfixed rat islets of Langerhans. Highest concentrations were detected in storage granules and in mitochondria, although calcium was also present in nuclei, in areas of endoplasmic reticulum and of cytoplasm. Accumulation of 45Ca by isolated organelles has been studied in homogenates and isolated subcellular fractions of rat islets of Langerhans. In the presence of a permeant anion (oxalate or phosphate), accumulation of 45Ca into mitochondria and microsomes was strongly stimulated by ATP. This net uptake was diminished during incubation of homogenates or of a mitochondria plus storage granule-rich fraction in the presence of cyclic AMP, dibutyryl cyclic GMP; 2:4-dinitrophenol or of ruthenium red. Investigations of the characteristics of 45Ca accumulation by homogenates prepared from storage granule-depleted islets showed no differences from those of normal islets, suggesting that the granules do not represent an important labile pool of calcium. With the exception of cyclic AMP and cyclic GMP none of the insulin secretagogues tested (glucose, leucine, arginine, adrenalin, noradrenalin, theophylline, glibenclamide) altered calcium accumulation by islet homogenates. On the basis of absolute calcium levels and of 45Ca uptake studies it is concluded that islet B cells contain a readily exchangeable mitochondrial calcium pool, and an endoplasmic reticulum pool containing a lower concentration of calcium which is also readily exchangeable. The storage granules, despite their high calcium content, do not appear to constitute a labile pool. It seems likely that the labile mitochondria and endoplasmic reticulum pools play a predominant role in the regulation of cytoplasmic free calcium levels, which may in turn be important in the regulation of rates of insulin secretion.  相似文献   

12.
Oxalate, a metabolic end product, forms calcium oxalate deposits in the tissues under a variety of pathological conditions. In order to determine whether oxalate is able to penetrate the mitochondrial matrix, the uptake of oxalate by rat liver and kidney cortical mitochondria was characterized. Mitochondria did not swell in an iso-osmotic medium of ammonium oxalate unless a small amount of phosphate was provided. This phosphate-induced swelling was prevented by N-ethylmaleimide. The uptake of [14C]oxalate by liver and kidney mitochondria followed first order kinetics and was inhibited by mersalyl an inhibitor of the phosphate and dicarboxylate carriers. Accumulation of [14C]oxalate at equilibrium was significantly higher by mitochondria energized with succinate than by rotenone-inhibited mitochondria due to higher matrix pH as determined by the [14C]5,5'-dimethyloxazolidine-2, 4-dione distribution ratio. The velocity of oxalate accumulation by mitochondria was temperature dependent. The activation energy was 81.5 and 86.5 J/mol for liver and kidney mitochondria, respectively. In both types of mitochondria, the rate of oxalate uptake was hyperbolic with respect to the concentration of oxalate. The apparent Km was 28.8 +/- 0.6 and 13.4 +/- 1.2 mM and the Vmax 87.1 +/- 1.1 and 66.1 +/- 3.1 nmol X mg-1 X min-1 at 12 degrees C for liver and kidney mitochondria, respectively. Phenylsuccinate exhibited mixed inhibition of the rate of oxalate uptake. Oxalate exhibited also a mixed inhibition of the uptake and oxidation of malate by mitochondria. The data obtained provide evidence that oxalate is transported across the mitochondrial membrane by a phosphate-linked, carrier-mediated system similar to or identical to the dicarboxylate transporter.  相似文献   

13.
Calcium uptake into ejaculated ram spermatozoa is highly enhanced by the addition of extracellular phosphate. Under identical conditions, extracellular calcium stimulates the uptake of phosphate by the cells. Both calcium and phosphate uptake are comparably inhibited by the sulfhydryl reagent mersalyl. The I50 was found to be 6.36 and 10.14 nmol mersalyl per mg protein for phosphate and calcium uptake, respectively. Calcium uptake is inhibited by mersalyl whether phosphate is present or not. Extracellular fructose causes a 5-fold increase in calcium uptake. When fructose and phosphate are present in the cell's medium, there is an additive effect, which indicates that two independent systems are involved in calcium transport into the cell. Ruthenium red, which blocks Ca2+ transport into the mitochondria, causes 70% and 95% inhibition of calcium uptake in the absence or in the presence of fructose, respectively. Ruthenium red does not affect phosphate uptake unless calcium was present in the incubation medium. The stimulatory effect of fructose upon calcium uptake can be mimicked by L-lactate and can be inhibited by the glycolytic inhibitor 2-deoxyglucose. Fructose and L-lactate stimulate mitochondrial respiration in a comparable way. Oligomycin, which inhibits mitochondrial ATP synthesis, does not inhibit Ca2+ uptake. This indicates that ATP is not involved in the mechanism by which mitochondrial respiration stimulates Ca2+ uptake. The calcium channel blocker, verapamil, inhibits Ca2+ uptake in the presence or absence of extracellular phosphate. The phosphate-dependent calcium transport mechanism is more sensitive to verapamil than is the phosphate-independent transporter. In summary, the data indicate that the plasma membrane of mammalian spermatozoa contains a calcium/phosphate symporter, a phosphate-independent calcium carrier and a calcium-independent phosphate carrier.  相似文献   

14.
At high K+ concentration, the effect of phosphate on Ca2+ uptake and release was studied in isolated rat liver mitochondria. Phosphate stimulated uptake at moderately high Ca2+ concentration, and inhibited release at high pH. At low pH, phosphate accelerated Ca2+ release. Ca2+ was released after a lag phase. The time of onset and the velocity of Ca2+ release depended on Ca2+ concentration. Ca2+ release was associated with mitochondrial swelling and destruction of the permeability barrier for sucrose and for chloride. Mg2+ inhibited Ca2+ release and the accompanying events. Ruthenium red and EGTA protected mitochondria from the destructive Ca2+ release and induced an immediate, slow release of Ca2+ and phosphate. Destructive Ca2+ release depended on the time of preincubation of respiration-inhibited mitochondria in the presence of Ca2+, prior to respiration-initiated Ca2+ uptake. The presence of phosphate and mitochondrial energization antagonized the destructive effect of calcium ions. Ca2+ release by acetoacetate also depended on pH. At pH 6.8, phosphate-stimulated Ca2+ release by acetoacetate, while it inhibited the acetoacetate effect at pH 7.6. The results suggest that an essential cause for the destruction of mitochondrial integrity is an increase in the intramitochondrial concentration of free calcium ions under the influence of phosphate.  相似文献   

15.
The effects of ethanol and other aliphatic alcohols on energy-dependent Ca2+ transport in endoplasmic reticulum and mitochondria were studied in digitonin-treated myometrium cells. The Ca2+ uptake in mitochondria increased (on 15-20%) with increasing methanol, ethanol and propanol concentrations in medium, whereas further rise of concentration inhibited this process. Treatments of myometrial cells with short-chain alcohols caused an inhibition of calcium uptake in endoplasmic reticulum. Butanol inhibited both calcium uptake in mitochondria and endoplasmic reticulum. Ca2+ accumulation in intracellular pools is inhibited by aliphatic alcohols in the following order of potency: butanol > propanol > ethanol > methanol. It is concluded that modifying effect of aliphatic alcohols on energy dependent calcium accumulation in intracellular membrane structures is defined as on origin of Ca(2+)-transporting system and (or) properties of these membrane structures so on properties of alcohols.  相似文献   

16.
Mitochondria normally exhibit very low electrophoretic permeabilities to physiologically important anions such as chloride, bicarbonate, phosphate, succinate, citrate, etc. Nevertheless, considerable evidence has accumulated which suggests that heart and liver mitochondria contain a specific anion-conducting channel. In this review, a postulated inner membrane anion channel is discussed in the context of other known pathways for anion transport in mitochondria. This anion channel exhibits the following properties. It is anion-selective and inhibited physiologically by protons and magnesium ions. It is inhibited reversibly by quinine and irreversibly by dicyclohexylcarbodiimide. We propose that the inner membrane anion channel is formed by inner membrane proteins and that this pathway is normally latent due to regulation by matrix Mg2+. The physiological role of the anion channel is unknown; however, this pathway is well designed to enable mitochondria to restore their normal volume following pathological swelling. In addition, the inner membrane anion channel provides a potential futile cycle for regulated non-shivering thermogenesis and may be important in controlled energy dissipation.  相似文献   

17.
Calcitonin was studied in isolated kidney cells and in isolated mitochondria. A concentration of 10 ng/ml of synthetic calcitonin increases the cellular accumulation of 45Ca and the total cell calcium. The mitochondrial pool is increased several-fold. Kinetic analysis of the data shows that although the total cellular exchangeable calcium pool is enlarged, calcium influx and efflux are significantly depressed by calcitonin. The absence of phosphate or the presence of inhibitors of mitochondrial calcium transport completely abolish the effects of the hormone. In isolated mitochondria, the hormone stimulates the active calcium uptake and depresses the extramitochondrial calcium activity. Calcitonin counteracts the effects of cyclic AMP which stimulates the release of calcium from mitochondria and increases the extramitochondrial calcium activity. These data indicate that cellular calcium homeostasis is controlled by the mitochondrial calcium turnover. They suggest that calcitomin regulates the cell calcium metabolism and inhibits the transcellular calcium transport by stimulating the rate of calcium uptake by mitochondria which depresses cytoplasmic calcium activity.  相似文献   

18.
Unfractionated and low buoyant density sarcoplasmic reticulum vesicles released calcium spontaneously after ATP- or acetyl phosphate-supported calcium uptake when internal Ca2+ was stabilized by the use of 50 mM phosphate as calcium-precipitating anion. This spontaneous calcium release could not be attributed to falling Ca2+ concentration outside the vesicles (Ca02+), substrate depletion, ADP accumulation, nonspecific membrane deterioration or the attainment of a high vesicular calcium content. Instead, spontaneous calcium release was directly proportional to Ca02+ at the time that calcium content was maximal. A causal relationship between high Ca02+ and spontaneous calcium release was suggested by the finding that elevation of Ca02+ from less than 1 μM to 3–5 μM increased the rate and extent of calcium release.The spontaneous calcium release was due both to acceleration of calcium efflux and slowing of calcium influx that was not accompanied by a significant change in the rate of ATP hydrolysis. Neither reversal of the transmembrane KCl gradient nor incubation with cation and proton ionophores abolished the spontaneous calcium release. The persistence of calcium release under conditions where the membrane was permeable to both anions and cations makes it unlikely that this phenomenon is due to a changing transmembrane potential.  相似文献   

19.
Ruthenium red prevented the spontaneous calcium release and the accompanying mitochondrial destruction occurring in calcium-loaded mitochondria in the presence of phosphate. Under these conditions delta pH and membrane potential delta psi were preserved and the ruthenium red-induced calcium efflux was low and at a constant rate. On prolonged incubation with calcium prior to addition of ruthenium red increasingly more mitochondrial calcium developed into a pool rapidly dischargeable by ruthenium red. This development was accompanied by stimulation of respiration which was, however, not abolished by ruthenium red as could have been expected if it had been caused by calcium cycling. Calcium therefore altered mitochondria by a different mechanism than by cycling across the inner membrane.  相似文献   

20.
Calcium-activated phosphate uptake in contracting corn mitochondria   总被引:10,自引:9,他引:1       下载免费PDF全文
The phosphate inhibition of succinate-powered contraction in corn mitochondria can be reversed with calcium. Associated with this reversal is an accumulation of phosphate and calcium. Both ions are essential for accumulation, although strontium will partially substitute for calcium. Arsenate does not substitute for phosphate except in producing the inhibition of contraction.

The antibiotics oligomycin and aurovertin do not block the phosphate inhibition of contraction or the calcium-activated phosphate uptake associated with the release of the inhibition. Dinitrophenol uncouples the phosphate uptake but permits full contraction.

Calcium promotes inorganic phosphate accumulation in root tissue as well as in mitochondria.

The results are discussed from the viewpoint of theories of calcium reaction with high energy intermediates of oxidative phosphorylation. It is concluded that calcium probably reacts with X~P in corn mitochondria, rather than with X~I as with animal mitochondria.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号