首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity. The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced predators are common, to that of smaller offshore islands, which serve as predator-free refuges. We assessed microsatellite variation in South Island robins (Petroica australis australis), and compared large mainland, small mainland, natural island and translocated island populations. Large mainland populations exhibited more polymorphic loci and higher number of alleles than small mainland and natural island populations. Genetic variation did not differ between natural and translocated island populations, even though one of the translocated populations was established with five individuals. Hatching failure was recorded in a subset of the populations and found to be significantly higher in translocated populations than in a large mainland population. Significant population differentiation was largely based on heterogeneity in allele frequencies (including fixation of alleles), as few unique alleles were observed. This study shows that large mainland populations retain higher levels of genetic diversity than natural and translocated island populations. It highlights the importance of protecting these mainland populations and using them as a source for new translocations. In the future, these populations may become extremely valuable for species conservation if existing island populations become adversely affected by low levels of genetic variation and do not persist.  相似文献   

2.
Allozyme variation was investigated in 17 Japanese populations of Campanula punctata, ten from the Izu Islands and seven in the mainland (Honshu). The data indicate that there are two groups, a mainland group and an island one, and that the systematically problematic Oshima Island (northernmost Izu island) populations are closely related to those of the other islands. Nei's genetic identity values among islands and among mainland populations were 0.95 and 0.97, respectively, while the value between island and mainland populations was 0.84, suggesting that the island populations are an independent species. Total genetic variation was nearly the same among island and mainland populations. However, the apportionment of variation within and among populations was considerably different; 14% of gene diversity exists among mainland populations, while 31% of the diversity exists among island populations. Mean outcrossing rates of self-incompatible mainland and Oshima populations are 0.62–0.79, supporting xenogamy; those in self-compatible island populations are 0.37–0.57 in the northern islands, indicating a mixed mating system, and 0.16–0.25 in southern ones, indicating dominant inbreeding. Total genetic diversity in each island population decreased with distance from the mainland. Genetic and geological data suggest that the ancestors of insular populations were founded on northern islands in a relatively ancient period and that they dispersed progressively to the southern ones. Chromosome number (2n = 34) and isozyme numbers indicate gene duplications in this species, which suggests it is an ancient polyploid.  相似文献   

3.
Population genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure. We use a natural system of island and mainland populations of house sparrows along the coast of Norway to characterize the different population genetic properties of fragmented populations. We genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The level of genetic differentiation was estimated using F‐statistics and specially designed Mantel tests were conducted to study the influence of population type (i.e. mainland or island) and geographic distance on the genetic population structure. Furthermore, the effects of population type, population size and latitude on the level of genetic variation within populations were examined. Our results suggest that genetic processes on islands and mainland differed in two important ways. First, the intrapopulation level of genetic variation tended to be lower and the occurrence of population bottlenecks more frequent on islands than the mainland. Second, although the general level of genetic differentiation was low to moderate, it was higher between island populations than between mainland populations. However, differentiation increased in mainland populations somewhat faster with geographical distance. These results suggest that population bottleneck events and genetic drift have been more important in shaping the genetic composition of island populations compared with populations on the mainland. Such knowledge is relevant for a better understanding of evolutionary processes and conservation of threatened populations.  相似文献   

4.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Reduced levels of genetic variability and a prominent differentiation in both neutral marker genes and phenotypic traits are typical for many island populations as compared to their mainland conspecifics. However, whether genetic diversity in neutral marker genes reflects genetic variability in quantitative traits, and thus, their evolutionary potential, remains typically unclear. Moreover, the phenotypic differentiation on islands could be attributable to phenotypic plasticity, selection or drift; something which seldom has been tested. Using eight polymorphic microsatellite loci and quantitative genetic breeding experiments we conducted a detailed comparison on genetic variability and differentiation between Nordic islands (viz. Gotland, Öland and Læsø) and neighbouring mainland populations of moor frogs (Rana arvalis). As expected, the neutral variation was generally lower in island than in mainland populations. But as opposed to this, higher levels of additive genetic variation (V A) in body size and tibia length were found on the island of Gotland as compared to the mainland population. When comparing the differentiation seen in neutral marker genes (F ST) with the differentiation in genes coding quantitative traits (Q ST) two different evolutionary scenarios were found: while selection might explain a smaller size of moor frogs on Gotland, the differentiation seen in tibia length could be explained by genetic drift. These results highlight the limited utility of microsatellite loci alone in inferring the causes behind an observed phenotypic differentiation, or in predicting the amount of genetic variation in ecologically important quantitative traits.  相似文献   

6.
Many animal populations that are endangered in mainland areas exist in stable island populations, which have the potential to act as an “ark” in case of mainland population declines. Previous studies have found neutral genetic variation in such species to be up to an order of magnitude lower in island compared to mainland populations. If low genetic variation is prevalent across fitness-related loci, this would reduce the effectiveness of island populations as a source of individuals to supplement declining mainland populations or re-establish extinct mainland populations. One such species, the black-footed rock-wallaby (Petrogale lateralis lateralis), exists within fragmented mainland populations and small island populations off Western Australia. We examined sequence variation in this species within a fitness-related locus under positive selection, the MHC class II DAB β1 locus. The mainland populations displayed greater levels of allelic diversity (4–7 alleles) than the island population, despite being small and isolated, and contained at least two DAB gene copies. The island population displayed low allelic diversity (2 alleles) and fewer alleles per individual in comparison to mainland populations, and probably possesses only one DAB gene copy. The patterns of DAB diversity suggested that the island population has a markedly lower level of genetic variation than the mainland populations, in concordance with results from microsatellites (genotyped in a previous study), but preserved unique alleles which were not found in mainland populations. Where possible, conservation actions should pool individuals from multiple populations, not only island populations, for translocation programs, and focus on preventing further declines in mainland populations.  相似文献   

7.
This study evaluated DNA fingerprinting as a tool for estimating population genetic diversity and differentiation by comparing minisatellite variation in island and mainland populations of silvereyes (Aves: Zosterops lateralis). Three populations with different recent histories were compared: (1) Heron Island and neighboring islands, colonized 3000 to 4000 yr ago; (2) Lady Elliot Island, colonized within the past two decades; and (3) an adjacent mainland population, which presumably has existed for thousands of years. The degree of genetic variability within the three populations reflected both their size and the time since their colonization. Minisatellite diversity was highest in the mainland population, intermediate in the Capricorn Island group (which was shown to represent a single admixture), and lowest in the Lady Elliot Island population, possibly because of a recent population bottleneck during colonization. Mean band sharing between any two populations was less than the mean within either of those populations, and four fingerprint bands common to island birds were rare or absent in the fingerprints of mainland birds. In the absence of significant gene flow between the mainland and the islands, the populations have apparently become distinct at minisatellite loci, as evidenced by differences in both allelic diversity and in the frequencies of specific fragments. Within the Heron Island population, cohort analyses demonstrated the temporal stability of the fingerprint profile over 6 yr. This study demonstrates that length polymorphisms at minisatellite loci may be stable enough over time to retain information about recent historical and demographic effects on the relative genetic variability and differentiation of small, closely related populations.  相似文献   

8.
Morphological and genetic variation is evaluated among populations of the bat, Eidolon helvum , in the islands of the Gulf of Guinea (Central Africa). The populations from the islands of Bioko, Principe, and Sao Tome do not show significant phenetic differentiation, although a trend towards a reduction of size is found in the latter two islands. The low genetic distances between populations, as well as their values of Wright's fixation indexes, suggest that gene flow has hampered differentiation on these islands. In contrast, the population from Annobon, the smallest and farthermost island, shows remarkable morphological and genetic differentiation. On the mainland, E. helvum displays unique migratory and dispersal behaviours, but migratory behaviour was not found in any of the island populations. The combination of selective forces in harsher oceanic environments and restricted gene flow among populations appears to have favoured the high degree of morphological differentiation of E. helvum on Annobon. Due to the extended length of the dry season in Annobon, an earlier achievement of sexual maturity–and consequently smaller size—may be advantageous in the absence of migration. The differentiation is more marked among females, which also suggests that selection may be linked to the reproductive pattern. The population of the island of Annobon is herein described as a new subspecies, Eidolon helvum annobonensis subsp. nov.  相似文献   

9.
The higher vulnerability of islands to invasions compared to mainland areas has been partially attributed to a simplification of island communities, with lower levels of natural enemies and competitors on islands conferring vacant niches for invaders to establish and proliferate. However, differences in invader life-history traits between populations have received less attention. We conducted a broad geographical analysis (i.e. 1050 km wide transect) of plant traits comparing insular and mainland populations to test the hypothesis that alien plants from insular populations have the potential for higher invasiveness than their alien mainland counterparts. For this purpose plants of the annual geophyte Oxalis pes-caprae were grown from bulbs collected in the Balearic islands and the Spanish mainland under common greenhouse conditions. There were no significant differences in bulb emergence and plant survival between descendants from insular and mainland populations. However, Oxalis descendants from insular populations produced 20% more bulbs without reducing allocation to bulb size, above-ground biomass or flowering than descendants from mainland populations. Based on the lack of sexual reproduction in Oxalis and the dependence of invasion on bulb production, our study suggests that the higher occurrence of Oxalis in the Balearic islands than in the Spanish mainland can partially be explained by genetically based higher propagation potential of insular populations compared to mainland populations.  相似文献   

10.
It is generally expected that small, isolated populations will suffer reduced fitness due to inbreeding, yet few studies have investigated the relation between population characteristics, inbreeding and fitness. Among Ontario populations of the short‐lived, perennial plant Aquilegia canadensis, large populations (N>90 flowering plants) outcross twice as frequently as small populations (N=30–40), and inbreeding depression is extremely strong. We tested the prediction that reproductive output, a major component of population fitness, should be positively associated with population size. Data from a survey of 33 populations located on small islands in the St. Lawrence River, Canada and 23 populations on adjacent mainland areas supported this prediction. Population size correlated positively with reproductive output, measured as the number of seedlings produced per plant in 1995 (average r=+0.39 pooled P=0.019), and the number of fruits per plant in 1997 (r=+0.30, P=0.056). We also tested the prediction that fitness should decline with increasing spatial isolation between populations by measuring the distance separating all island populations. However, reproductive output did not correlate with isolation in either year. We compared island and mainland populations to test the prediction that reproductive output should be lower for populations on small islands than those occurring in more continuous mainland habitat. In contrast to our predictions, island populations exhibited, if anything, higher reproductive output than mainland populations. We also found no support for the prediction that the positive association between population size and reproductive output should be stronger for presumably isolated populations on small islands than for those on adjacent mainland areas. While the mechanisms underlying the association between population size and fitness are impossible to identify with correlations alone, our results are consistent with the hypothesis that inbreeding can significantly reduce the fitness of natural populations.  相似文献   

11.
Dacrycarpus imbricatus is a vulnerable conifer in China whose geographical distribution encompasses large island but small mainland populations, providing a framework for contrasting the patterns of population genetic composition. In this study, seven populations on Hainan Island and the Chinese mainland were sampled throughout its distribution range and assessed using ISSR. The results did not show significant differences neither in genetic variation nor in genetic differentiation between the island and the mainland populations (P > 0.05). Severe bottlenecks were identified at population, island/mainland as well as range-wide scales. A relatively high level of variation but a low degree of differentiation was revealed. Ecological and life traits were suggested to play main roles in the shaping of genetic variation pattern. Of them long generation times could have exerted a lagging effect on both the genetic variation and differentiation. Our findings may contribute to establish management practices.  相似文献   

12.
The genetic polymorphism of Malagasy prosimian populations is studied by using RAPD markers. The analysis includes twoLepilemur septentrionalis populations of the area of Analamera separated by a deforested hill crest and one population ofL. dorsalis from the island of Nosy-Be. The genetic diversity is higher in the two populations of Analamera than in that of Nosy-Be and the level of genetic differentiation is higher between the population ofL. dorsalis and the two populations ofL. septentrionalis than between the two populations ofL. septentrionalis themselves. Despite the hill crest separating the two populations ofL. septentrionalis, our results demonstrate that they belong to one population. The respective roles of the geographical barriers and the reproductive barrier between the two species, are discussed.  相似文献   

13.
性选择、配偶外父亲身份确认程度、遗传变异性和保护   总被引:4,自引:0,他引:4  
Anders.P 《动物学报》2001,47(1):2-12
岛屿动物中的性选择强度不高,其原因可能是由于岛屿种群的遗传变异性水平较低。本文作者检验了鸟类岛屿种群是否具有较低的遗传变异性、性选择强度大的种群是否具有较高的突变输入率(rate of mutational input),在鸟类岛屿种群中是否具有较低的性选择强度(可以根据配偶外父亲身份的频率来估计)。小卫星共有谱带系数(minisatellite band sharing coefficient)可确定无亲源关系个体之间的遗传变异性,对与遗传变异性有关的雄性个体的父亲(paternity)进行了成对比较以检验如下假说:在具有较多遗传变异的种群中,雌性个体更经常地进行配偶外交配。在小卫星谱带系数较低的鸟类种群中,配偶外父亲的频次较高。对岛屿和大陆鸟类进行的第二个比较分析表明:岛屿种群中的配偶外父亲频次较低,遗传变异性也较低,其部分原因在于突变输入(mutational input)减少。上述发现表明:(1)父亲确认程度(parternity)随遗传变异性的数量而增加;(2)在遗传变异性较大的种群中,突变率较高,性选择的程度更激烈;(3)岛屿种群中性选择的强度一般比大陆种群弱。这对于理解遗传变异性的空间变异、理解岛屿种群和其它隔离种群的保护问题有重要启示。  相似文献   

14.
Translocation and reintroduction are important tools for the conservation or recovery of species threatened with extinction in the wild. However, an understanding of the potential genetic consequences of mixing populations requires an understanding of the genetic variation within, and similarities among, donor and recipient populations. Genetic diversity was measured using two independent marker systems (microsatellites and AFLPs) for one island and four small remnant mainland populations of Setonix brachyurus, a threatened medium sized macropod restricted to fragmented habitat remnants and two off-shore islands in southwest Australia. Microsatellite diversity in the island population (R s = 3.2, H e = 71%) was similar to, or greater than, all mainland populations (R s = 2.1–3.9, H e = 34-71%). In contrast, AFLP diversity was significantly lower in the island population (PPL = 20.5; H j = 0.118) compared to all mainland populations (mean PPL = 79.5–89.7; mean H j = 0.23–0.29). Microsatellites differentiated all (mainland and island) populations from each other. However, AFLP only differentiated the island population from the mainland populations—all mainland populations were not significantly differentiated from each other for this marker. Given a known time since isolation of the island population from the mainland (6,000 years ago), and an overall more conservative rate of evolution of AFLP markers, our results are consistent with mainland populations fragmenting thousands of years ago (but <6,000 years), probably as a consequence of reduced rainfall and the constriction of the preferred mesic habitat of quokkas. Our results also support a recent history of severe population bottlenecks in mainland populations, and a long history of bottlenecks of the island population, but reflect a recent explosion in numbers since European occupation of the island. Our results indicate that translocation of island populations to supplement mainland populations would introduce genetically markedly differentiated, and possibly maladapted, individuals.  相似文献   

15.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

16.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

17.
Aim To provide insights into genetic differentiation between insular endemic Weigela coraeensis var. fragrans and its progenitor variety W. coraeensis var. coraeensis, the population genetic structure of both varieties was examined, and factors promoting genetic differentiation between the two taxa were explored. Location The natural range of W. coraeensis (sensu lato) throughout mainland Japan (Honshu) and the Izu Islands. Methods The analysis included 349 and 504 individuals across the mainland (Honshu) and the Izu Islands, respectively, using 10 allozyme and 10 microsatellite loci. The population genetic structure of W. coraeensis was assessed by analysing genetic diversity indices for each population, genetic differentiation among populations, model‐based Bayesian clustering or distance‐based clustering, and bottleneck tests. Results The level of genetic diversity in each of the populations on the Izu Islands was negatively correlated with geographical distance between each island and the mainland. The populations on the mainland and on the Izu Islands were genetically differentiated to a certain extent; however, the microsatellite analyses suggested that gene flow also occurred between the mainland and the islands, and among individual islands. These microsatellite analyses also suggested recent bottlenecks in several populations in both areas. Main conclusions The decrease in genetic diversity throughout the Izu Islands, which correlated with distance to the mainland, Honshu, may be the result of a repeated founder effect occurring at a series of inter‐island colonizations from north to south. The stepping stone‐like configuration of the islands may have played a role in the dispersal of the species. Geographical isolation by sea would effectively result in genetic differentiation of W. coraeensis between mainland Honshu and the Izu Islands, although some gene flow may still occur between Honshu and the northern Izu Islands. The differentiation process of the endemic plants on the Izu Islands is anagenetic but not completed, and the study of these plants will provide insightful knowledge concerning the evolution of insular endemics.  相似文献   

18.
We studied genetic effects of the colonisation process during primary succession by analysing allozyme variation at a PGI locus in differently aged populations of Moehringia trinervia , which is a selfing annual with low dispersal ability. The populations studied come from islands and shores created in the 1880s by a drop in the water table of a Swedish lake and from old parts of a large island and of the mainland. The population age is known from five vegetation analyses over a century. We have also analysed the genetic composition of M. trinervia derived from seeds in the soil. Mainland populations had a higher genetic diversity than island populations that were little differentiated and differed genetically from the mainland populations. There was no temporal trend in the distribution of genetic variation on the new islands. The presence of alleles in the extant populations was associated with the proportion of that allele in the seed bank, indicating a main recruitment from the seed bank and not by repeated immigrations. We suggest that some of the new islands were colonised by a few early founders from the mainland. Later colonisation has occurred between adjacent islands, which preserves the founder effect and could explain the uniform, low genetic variation in the island populations.  相似文献   

19.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

20.
We investigated the genetic structure of Sorex unguiculatus and Sorex caecutiens populations in Hokkaido, Japan, using hypervariable microsatellite DNA markers. We used five microsatellite loci to type 475 S. unguiculatus individuals from 20 localities on the Hokkaido mainland and four localities from each of four offshore islands (and 11 shrews from one locality in southern Sakhalin for a particular analysis). We used six microsatellite loci to type 240 S. caecutiens individuals from 13 localities on the Hokkaido mainland. Genetic variation was high in mainland populations of both species and low in the island populations of S. unguiculatus. Allelic richness and island size were positively correlated for S. unguiculatus, suggesting that genetic drift occurred on those islands due to small population size. In addition, four insular populations of S. unguiculatus were genetically differentiated from the mainland populations, although clear phylogeographic clustering was not confirmed among populations on the Hokkaido mainland for either S. unguiculatus or S. caecutiens. Heterozygosity excess was observed in more than half of the populations including the mainland populations of the two species, suggesting recent bottleneck events in these populations. Population dynamics of the shrews might be explained by a metapopulation scheme. According to autocorrelation analysis, the extent of non-random spatial genetic structure was approximately 100 km. Isolation by distance was observed in S. unguiculatus, but not in S. caecutiens although there is a positive trend. The lack of correlation for S. caecutiens might have been due to small sample size. Thus, no obvious differences in population genetic structure were found between the two species on the Hokkaido mainland in the present study, while previous investigations using mitochondrial DNA sequences inferred that these two species might have rather different biogeographic histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号