首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B binding sequence ((K/R)(L/I)XWXXIL). As with other S100B target proteins, a calcium-dependent conformational change in S100B is required for TRTK-12 binding. The TRTK-12 peptide is an amphipathic helix (residues W7 to S12) in the S100B-TRTK complex, and helix 4 of S100B is extended by three or four residues upon peptide binding. However, helical TRTK-12 in the S100B-peptide complex is uniquely oriented when compared to the three-dimensional structures of other S100-peptide complexes. The three-dimensional structure of the S100B-TRTK peptide complex illustrates that residues in the S100B binding consensus sequence (K4, I5, W7, I10, L11) are all involved in the S100B-peptide interface, which can explain its orientation in the S100B binding pocket and its relatively high binding affinity. A comparison of the S100B-TRTK peptide structure to the structures of apo- and Ca(2+)-bound S100B illustrates that the binding site of TRTK-12 is buried in apo-S100B, but is exposed in Ca(2+)-bound S100B as necessary to bind the TRTK-12 peptide.  相似文献   

2.
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.  相似文献   

3.
To define the minimal peptide length needed for gene delivery into mammalian cells, we synthesized several peptides with shortened chain lengths from the amino-termini of the original amphiphilic peptides (4(6), Ac-LARL-LARL-LARL-LRAL-LRAL-LRAL-NH( 2,) and Hel 11-7, KLLK-LLLK-LWKK-LLKL-LK), which have been known to have gene transfer abilities into cells. Each synthetic peptide was studied for its ability to bind and aggregate with plasmid DNA and the structural change of the peptide caused by binding with the DNA to establish a relative in vitro gene transfection efficiency in COS-7 cells. As a result, the deletion of eight amino acid residues of 4(6) had little influence on their ability, whereas that of 12 amino acid residues remarkably reduced the abilities to make aggregates and transfer the DNA into the cell. In the case of the Hel 11-7 series peptides, deletion of amino acid residues caused a considerable reduction in abilities to bind and form aggregates with DNA and to transfer the DNA into cell in due order. In summary, 16 and 17 amino acid residues were sufficient to form aggregates with the DNA and transfer the DNA into the cells in the deletion series of 4(6) and Hel 11-7, respectively. Furthermore, it was indicated that reduction of membrane perturbation activity of the peptide-DNA complex due to deletion of the peptide chain length caused suppression of the transfection efficiency even if the complex was incorporated into the cells. Transfer of the complex to cytosol mediated by membrane perturbation activity of the peptide is an important step for efficient protein expression from its cDNA. The results of this study will make it easy to design and synthesize a functional gene carrier molecule such as a carbohydrate-modified peptide used in targeted gene delivery.  相似文献   

4.
This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal delta12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L(alpha) phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8 degrees with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a peptide-bilayer model useful in the consideration of local protein folding in the microsomal desaturases, and presents a model of arginine and tyrosine control of transmembrane protein stability and insertion.  相似文献   

5.
The objective of this work is to study the conformation of cyclic peptide (1), cyclo (1, 12) Pen1-Gly2-Val3-Asp4-Val5-Asp6-Gln7-+ ++Asp8-Gly9-Glu10-Thr11-Cys12, in the presence and absence of calcium. Cyclic peptide 1 is derived from the divalent cation binding sequence of the alpha-subunit of LFA-1. This peptide has been shown to inhibit ICAM-1-LFA-1 mediated T-cell adhesion. In order to understand the structural requirements for this biologically active peptide, its solution structure was studied by nuclear magnetic resonance (NMR), circular dichroism (CD) and molecular dynamics simulations. This cyclic peptide exhibits two types of possible conformations in solution. Structure I is a loop-turn-loop type of structure, which is suitable to bind cations such as EF hand proteins. Structure II is a more extended structure with beta-hairpin bend at Asp4-Val5-Asp6-Gln7. There is evidence that alterations in the conformation of LFA-1 upon binding to divalent cations cause LFA-1 to bind to ICAM-1. To understand this mechanism, the cation-binding properties of the peptide were studied by CD and NMR. CD studies indicated that the peptide binds to calcium and forms a 1 : 1 (peptide: calcium) complex at low calcium concentrations and multiple types of complexes at higher cation concentrations. NMR studies indicated that the conformation of the peptide is not significantly altered upon binding to calcium. The peptide can inhibit T-cell adhesion by directly binding to ICAM-1 or by disrupting the interaction of the alpha and beta-subunits of LFA-1 protein. This study will help us to understand the mechanism(s) of action of this peptide and will improve our ability to design a better inhibitor of T-cell adhesion.  相似文献   

6.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

7.
Voltage-gated sodium channels (VGSCs) are responsible for generating action potentials in nervous systems. Veratridine (VTD), a lipid soluble alkaloid isolated from sabadilla lily seed, is believed to bind to segment 6 of VGSCs and act as a partial agonist. However, high resolution structural interaction mechanism between VGSCs and VTD is difficult to elucidate because of the large size and membrane localization of VGSCs. Here, the authors designed model peptides corresponding to domain IV segment 6 (DIVS6) of rat skeletal muscle Na(v)1.4 and analyzed the complex of the model peptides and VTD by solution NMR analysis to obtain structural information of the interaction. The model peptides successfully formed an α-helices, which is the suspected native conformation of DIVS6, in aqueous 2,2,2-trifluoroethanol, a membrane-mimicking solvent. The VTD binding residues of the model peptide were identified using the NMR titration experiments with VTD, including a newly discovered VTD binding residue Leu14 (μ1-L1580 in Na(v)1.4), which has not been reported by point mutation studies. Mapping of VTD binding residues on the model peptide revealed the hydrophobic interaction surface. NMR titration experiments with a non-toxic analog of VTD, veracevine, also indicated that the steroidal backbone of VTD interacts with the hydrophobic interaction surface of DIVS6 and that the 3-acyl group of VTD possibly causes neurotoxicity by interacting with domain I segment 6 and/or domain IV segment 4.  相似文献   

8.
The crystal structure of Fab of an Ab PC283 complexed with its corresponding peptide Ag, PS1 (HQLDPAFGANSTNPD), derived from the hepatitis B virus surface Ag was determined. The PS1 stretch Gln2P to Phe7P is present in the Ag binding site of the Ab, while the next three residues of the peptide are raised above the binding groove. The residues Ser11P, Thr12P, and Asn13P then loop back onto the Ag-binding site of the Ab. The last two residues, Pro14P and Asp15P, extend outside the binding site without forming any contacts with the Ab. The PC283-PS1 complex is among the few examples where the light chain complementarity-determining regions show more interactions than the heavy chain complementarity-determining regions, and a distal framework residue is involved in Ag binding. As seen from the crystal structure, most of the contacts between peptide and Ab are through the five residues, Leu3-Asp4-Pro5-Ala6-Phe7, of PS1. The paratope is predominantly hydrophobic with aromatic residues lining the binding pocket, although a salt bridge also contributes to stabilizing the Ag-Ab interaction. The molecular surface area buried upon PS1 binding is 756 A(2) for the peptide and 625 A(2) for the Fab, which is higher than what has been seen to date for Ab-peptide complexes. A comparison between PC283 structure and a homology model of its germline ancestor suggests that paratope optimization for PS1 occurs by improving both charge and shape complementarity.  相似文献   

9.
Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 728 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS.  相似文献   

10.
The conformation and calcium binding properties of the bicyclic nonapeptide BCP2, cyclo-(Glu(1)-Ala(2)-Pro(3)-Gly(4)-Lys(5)-Ala(6)-Pro(7)-Gly(8))-cyclo-(1gamma --> 5epsilon) Gly(9), have been investigated by means of NMR spectroscopy. Interproton distances, evaluated by nuclear Overhauser effect (NOE) contacts, and straight phi angles, from (3)J(NH-alphaCH), have been used to obtain a feasible model for the BCP2-Ca(2+) (BCP: bicyclic peptide) complex by means of restrained molecular dynamics (RMD). The NMR analysis of the free peptide, carried out in CD(3)CN, shows the presence in solution of at least four conformers in intermediate exchange rate. The addition of calcium ions caused the appearance of a new set of resonances, differing from those observed for the free BCP2. A comparison with published data about the conformational behavior of the closely analogous peptide BCP3, differing from BCP2 for two Leu residues instead of two Ala residues in positions 2 and 6, shows that this simple substitution dramatically increases the peptide flexibility. On the contrary, upon calcium ion addition, both BCP2 and BCP3 reach a strictly close conformation, as strongly testified by the almost identical (1)H-NMR spectra exhibited by both peptides. The RMD molecular model of the BCP2-Ca(2+) complex, here reported, is a quite symmetric structure, presenting a three-dimensional cavity ideal for the binding of spherical cations. Four carbonyls from the main ring (Ala(2), Gly(4), Ala(6) and Gly(8)) point toward it, offering, together with the two carbonyls of the peptide bridge (Gly(9) and gammaGlu(1)), putative coordinations to the cation.  相似文献   

11.
Immunogenic and protective peptide sequences are of prime importance in the search for an anti-malarial vaccine. The MSP-1 conserved and semi-conserved sequences have been shown to contain red blood cell (RBC) membrane high affinity binding peptides (HABP). HABP 1513 sequence ((42)GYSLFQKEKMVLNEGTSGTA(61)), from this protein's N-terminal, has been shown to possess a T-epitope; however, it did not induce a humoral immune response or complete protection when evaluated in Aotus monkeys. Analogue peptides with critical binding residues replaced by amino acids with similar mass but different charge were synthesised and tested for immunogenicity and protectivity in monkey. NMR studies correlated structural behaviour with biological function. Non-immunogenic and non-protective 1513 native peptide presented a helical fragment between residues L(4) and E(14). C-terminal, 5-residue-shorter, non-immunogenic, non-protective peptide 17894 contained an alpha-helix from Q(6) to L(12) residues. Immunogenic and protective peptide 13946 presented a shorter alpha-helix between K(7) to N(13) residues. These data suggest that changing certain residues permits better peptide fit within the MHC class II-peptide-TCR complex, thus activating the immune system and inducing a protective immune response.  相似文献   

12.
As is typical for S100-target protein interactions, a Ca2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.  相似文献   

13.
14.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by one- and two-dimensional NMR techniques in aqueous solution: acetyl-Phe(8)-Leu(9)-Ala(10)-Glu-(11)-Gly(12)-Gly(13)-Gly(14)-Val(15)-Ar g(16)- Gly(17)-Pro(18)-NHMe (F6), acetyl-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16) (tF6), acetyl-Asp(7)-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16)-Gly(17)-Pro- Arg(19)-Val(20)-NHMe (F8), and acetyl-Asp-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16) (tF8). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds in both F6 and F8 were cleaved instantaneously in the presence of 0.5 mM thrombin, producing truncated peptides tF6 and tF8 and other peptide fragments. On the basis of observations of line broadening, thrombin was found to bind to the cleavage products, tF6 and tF8, of peptides F6 and F8. Peptide tF8 may have a higher affinity for thrombin than peptide tF6, as suggested by the more pronounced thrombin-induced line broadening on the proton resonances in peptide tF8. Transferred NOE (TRNOE) measurements were made of the complexes between thrombin and peptides tF6 and tF8. Medium- and long-range NOE interactions were found between the NH proton of Asp(7) and the C beta H protons of Ala(10), between the C alpha H proton of Glu(11) and the NH proton of Gly(13), and between the ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). Sets of structures of the decapeptide tF8 were deduced by use of distance geometry calculations based on sequential and medium- and long-range TRNOEs from the thrombin-bound peptide. A predominant feature of these structures is the nonpolar cluster formed by the side chains of residues Phe(8), Leu(9), and Val(15) that are directly involved in binding to thrombin. This structural feature is brought about by an alpha-helical segment involving residues Phe(8)-Ala(10), followed by a multiple-turn structure involving residues Glu(11)-Val(15). These results provide an explanation for the observations that Asp(7), Phe(8), and Gly(12) are strongly conserved in mammalian fibrinogens and that the mutations of Asp(7) to Asn(7) and of Gly(12) to Val(12), result in delayed release of fibrinopeptide A, producing human bleeding disorders.  相似文献   

15.
Plasmatocyte-spreading peptide (PSP) is a 23-amino acid cytokine that activates a class of insect immune cells called plasmatocytes. PSP consists of two regions: an unstructured N terminus (1-6) and a highly structured core (7-23). Prior studies identified specific residues in both the structured and unstructured regions required for biological activity. Most important for function were Arg13, Phe3, Cys7, Cys19, and the N-terminal amine of Glu1. Here we have built on these results by conducting cell binding and functional antagonism studies. Alanine replacement of Met12 (M12A) resulted in a peptide with biological activity indistinguishable from PSP. Competitive binding experiments using unlabeled and 125I-M12A generated an IC50 of 0.71 nm and indicated that unlabeled M12A, at concentrations > or =100 nm, completely blocked binding of label to hemocytes. We then tested the ability of other peptide mutants to displace 125I-M12A at a concentration of 100 nm. In the structured core, we found that Cys7 and Cys19 were essential for cell binding and functional antagonism, but these effects were likely because of the importance of these residues for maintaining the tertiary structure of PSP. Arg13, in contrast, was also essential for binding and activity but is not required for maintenance of structure. In the unstructured N-terminal region, deletion of the phenyl group from Phe3 yielded a peptide that reduced binding of 125I-M12A 326-fold. This and all other mutants of Phe3 we bioassayed were unable to antagonize PSP. Deletion of Glu1 in contrast had almost no effect on binding and was a strong functional antagonist. Experiments using a photoaffinity analog indicated that PSP binds to a single 190-kDa protein.  相似文献   

16.
Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca(2+)-bound recoverin in the absence of target (<1.8A root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca(2+) is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca(2+)-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca(2+)-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca(2+).  相似文献   

17.
alpha-Conotoxins are small disulfide-constrained peptide toxins which act as antagonists at specific subtypes of nicotinic acetylcholine receptors (nACh receptors). In this study, we analyzed the structures and activities of three mutants of alpha-conotoxin ImI, a 12 amino acid peptide active at alpha7 nACh receptors, in order to gain insight into the primary and tertiary structural requirements of neuronal alpha-conotoxin specificity. NMR solution structures were determined for mutants R11E, R7L, and D5N, resulting in representative ensembles of 20 conformers with average pairwise RMSD values of 0.46, 0.52, and 0.62 A from their mean structures, respectively, for the backbone atoms N, C(alpha), and C' of residues 2-11. The R11E mutant was found to have activity near that of wild-type ImI, while R7L and D5N demonstrated activities reduced by at least two orders of magnitude. Comparison of the structures reveals a common two-loop architecture, with variations observed in backbone and side-chain dihedral angles as well as surface electrostatic potentials upon mutation. Correlation of these structures and activities with those from previously published studies emphasizes that existing hypotheses regarding the molecular determinants of alpha-conotoxin specificity are not adequate for explaining peptide activity, and suggests that more subtle features, visualized here at the atomic level, are important for receptor binding. These data, in conjunction with reported characterizations of the acetylcholine binding site, support a model of toxin activity in which a single solvent-accessible toxin side-chain anchors the complex, with supporting weak interactions determining both the efficacy and the subtype specificity of the inhibitory activity.  相似文献   

18.
Conformational, GTP binding, and GTP hydrolytic studies are carried out with synthetically prepared N-terminal 34 residue segments (residues 2-35) of p21 ras oncogenic (12-Val) and non-oncogenic (12-Gly) proteins. It was found that these N-terminal regions bind nucleotides through their phosphate groups, and that substitution of valine for glycine produces a more pronounced alpha-helical structure and decreases the conformational flexibility. The glycine containing peptide, when compared to the valine containing analog, catalyses the hydrolysis of GTP 6 times more efficiently. Results suggest that restriction of conformational adaptation may contribute to the transforming capacity of the Val-12 p21 protein.  相似文献   

19.
20.
We report the conformational analysis by 1H NMR in DMSO and computer simulations involving distance geometry and molecular dynamics simulations at 300K of peptoid analogs of the cyclic hexapeptide c-[Phe11-Pro6-Phe7-D-Trp8-Lys9-Thr10]. The analogs c-[Phe11-Nasp6-Phe7-D-Trp8-Lys9-Thr10](1), c-[Phe11-Ndab6Phe7-D-Trp8-Lys9-Thr10] (2) and c-[Phen11-Nlys6-Phe7-D-Trp8-Lys9-Thr10](3) where Nasp denotes N-(2-carboxyethyl) glycine, Ndab N-(2-aminoethyl) glycine and Nlys N-(4-aminobutyl) glycine are subject to conformational studies. The results of free and restrained molecular dynamics simulations at 300K are reported and give insight into the conformational behaviour of these analogs. The compounds show two sets of nuclear magnetic resonance signals corresponding to the cis and trans orientations of the peptide bond between residues 11 and 6. The backbone conformation of the cis isomers that we believe are the bioactive isomers of the three compounds are very similar to each other while there are larger variations amongst the trans isomers. The binding data to the isolated receptors show that the introduction of the Nlys residue in analog 3 leads to an enhancement of binding potency to the hsst5 receptor compared with analog 2 while maintaining identical binding potency to the hsst2 receptor. The Nasp6 analog 1 binds weakly to the hsst2 and is essentially inactive towards the other receptors. Comparison of the conformations and binding activities of these three analogs indicates that the Nlys residue extends sufficiently far to allow binding to a negatively charged binding domain on the hsst5 receptor. According to this model, the Ndab analog 2 cannot extend far enough to allow for binding to the receptor pocket. The loss of activity observed for the Nasp6 compound 1 indicates that the presence of a negatively charged residue in position 6 is unfavorable for binding to the hsst receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号