首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Gratzel’s cell, the electrons injected by the photo-excitation of dye molecules, anchored to a mesoporous TiO2 film, efficiently diffuse to the back contact achieving solar energy conversion at efficiencies exceeding 10%. The mesoporous TiO2 surface constituted of randomly arranged nanocrystallites with a roughness factor of the order 1000 is heavily populated with traps, defects and adsorbed species which act as recombination centers. Nevertheless, the cell functions, mitigating recombination expected to occur via the interaction electrons at the surface. Evidence based mainly on 1/f noise measurements is presented to show that dye bonded to the TiO2 surface passivates recombination centers. Furthermore the suppression of trapping-detrapping events at the surface increases the diffusion coefficient of the electrons through the nanocrystalline matrix facilitating electron transport to the back contact. The Gratzel cell is also unique, none of the high bandgap oxide materials other than TiO2 yield energy conversion and quantum efficiencies as high as that of the cells based on TiO2. 1/f noise measurements also reveal a distinct difference between TiO2 and ZnO mesoporous films suggesting that the films made from the latter material are more intensely populated with surface states that mediate recombination.  相似文献   

2.
The retention patterns of five taxonomically different marine bacteria after attachment on two types of glass surfaces, as-received and chemically etched, have been investigated. Contact angle measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), X-ray fluorescence spectroscopy (XRF) and X-ray photoelectron spectrometry (XPS) were employed to investigate the impact of nanometer scale surface roughness on bacterial attachment. Chemical modification of glass surfaces resulted in a ~1 nm decrease in the average surface roughness (R a) and the root-mean-squared roughness (Rq ) and in a ~8 nm decrease in the surface height and the peak-to-peak (R max) and the 10-point average roughness (Rz ). The study revealed amplified bacterial attachment on the chemically etched, nano-smoother glass surfaces. This was a consistent response, notwithstanding the taxonomic affiliation of the selected bacteria. Enhanced bacterial attachment was accompanied by elevated levels of secreted extracellular polymeric substances (EPS). An expected correlation between cell surface wettability and the density of the bacterial attachment on both types of glass surfaces was also reported, while no correlation could be established between cell surface charge and the bacterial retention pattern.  相似文献   

3.
Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins α-casein, β-casein, κ-casein, and α-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.  相似文献   

4.
Bird A. F. and Riddle D. L. 1984. Effect of attachment of Corynebacterium rathayi on movement of Anguina agrostis larvae. International Journal for Parasitology 14: 503–511. The movement of freshly hatched larvae (FHL2) and dauer larvae (DL2) of Anguina agrostis was compared on ‘agarose’ plates. The DL2S moved faster and over greater distances. They were not attracted to Corynebacterium rathayi on agar plates, but contact with this bacterium, in most instances, markedly reduced their speed of movement. This reduction was found to be approximately proportional to the concentration of the bacteria (from 8 × 105 to 8 × 108 per ml) to which the DL2 were exposed prior to observation of their movement, as was the number of bacteria observed to be adhering when viewed under the light microscope. This type of bacterial attachment appeared to be largely stage specific as it was much more pronounced and characteristically different in the DL2 from that in the FHL2. This interaction between the DL2 and the bacterium was similar in material from fresh and from rehydrated nematode galls so that it was apparently not dependent on any surface cuticular changes associated with anhydrobiosis. Furthermore, pretreatment of the nematodes with the surfactant SDS did not influence attachment. An electron microscope study of sections cut through DL2 exposed to bacteria showed that this interaction was indeed not a surface phenomenon but that the bacteria exerted a pathological effect on the nematode. The bacterium's capsular material actually penetrated and broke down the nematode epicuticle and part of the cortical zone. These observations make it easier to understand the dramatic physiological responses of this nematode to these bacteria.  相似文献   

5.
The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15–4.30 eV and differ by 0.2–0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films.  相似文献   

6.
The influence of alginate on the attachment of Vibrio alginolyticus and Vibrio pelagius biovar II to stainless steel was investigated. When the bacteria were in stationary phase, alginate decreased the number of attached bacteria in the case of each Vibrio sp. In contrast, when V. pelagius biovar II was grown on alginate and harvested in log phase, attachment was increased. This effect may be due to nutrient availability at the surface or to receptors on the bacterial surface which interact with alginate adsorbed to the metal.  相似文献   

7.
The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films.  相似文献   

8.
The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT) included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability (40–60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90%) against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher –SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films.  相似文献   

9.
The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.  相似文献   

10.
An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces.  相似文献   

11.
The mechanism of sulfide oxidation by adhering bacteria (direct oxidation mechanism) and by ferric ion in the aqueous phase was studied by quantitative assessment of bacterial activity on the sulfide surface. To probe for the principal bacterial species on the surface and in the supernatant, a library of DNA genes encoding portions of bacterial 16S rRNA was constructed. The PCR-amplified DNA from the bacterial populations was cloned employing PROMEGA's pGEM-T Easy Vector system. The clone frequency indicated that iron-oxidizing bacteria were dominant in the liquid phase, while Acidithiobacillus ferroixdans, which is both sulfur and iron oxidizer was the most prevalent on the sulfide surface. Samples of crystalline pyrite were exposed to the bacterial consortium to evaluate surface alterations caused by bacteria. Chemical (abiotic) oxidation experiments with ferric ion as the oxidant were carried out in parallel with the biological oxidation tests. Changes in the surface topography were monitored by atomic force microscopy (AFM) while changes in surface chemistry were examined by Raman spectroscopy. Bacterial attachment resulted in a 53% increase in the specific surface area in comparison to a 13% increase caused by chemical (ferric ion) oxidation. The oxidation rate was assessed by evaluating the iron release. After corrections for surface area changes, the specific abiotic (oxidation by Fe3 +) and biotic oxidation rates with adhering bacteria were nearly the same (2.6 × 10? 9 mol O2/s/m2 versus 3.3 × 10? 9 mol O2/s/m2) at pH = 2 and a temperature of 25°C. The equality of rates implies that the availability of ferric ion as the oxidant is rate limiting.  相似文献   

12.
EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries.  相似文献   

13.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   

14.
Multilayer films were prepared through a self-assembly technique of proteases. Solutions of pepsin, lysozyme and trypsin at 10−5 M (pH 6.4, pH 6.4, and pH 7.6, respectively) were used as precursors for film building. The wettability of the film surfaces were estimated by contact angle measurements indicating a higher hydrophobicity to trypsin. This was in agreement to the calculated surface tension components. The patterns of the films were examined using atomic force microscopic images. Surfaces before and after bacteria (Escherichia coli) interactions were also characterized. The results indicate that the hydrophobicity plays a key role in bacterial adhesion and that roughness can be considered as a secondary factor.  相似文献   

15.
Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, Pf) and Pb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated Pf) and Pb) and found good agreement with the measurements.  相似文献   

16.
Electrolyte Effects on Attachment of an Estuarine Bacterium   总被引:5,自引:12,他引:5       下载免费PDF全文
The effect of electrolyte concentration on attachment of Vibrio alginolyticus to hydroxyapatite was determined. Bacterial affinity for attachment to the surface and surface capacity were derived from linearization of bacterial adsorption isotherms. At low concentrations (<0.1 M) the affinity of the bacteria for the surface increased with increasing ionic strength, in agreement with the D.L.V.O. theory of colloid interaction. At higher concentrations, bacterial affinity for the surface decreased with increasing concentration of cations and was not related to ionic strength changes in the medium. These results demonstrate a change in the mechanism by which salts affect bacterial attachment at salt concentrations above 0.1 M. The results are consistent with the relationship between the proportion of attached bacteria and salinity observed in previously published field studies. The results may also resolve differences between various attachment studies carried out in different ionic strength media, utilizing different bacteria, surfaces, and experimental methods.  相似文献   

17.
The formation of carbonitride (C x N y ) films in the active and afterglow phases of a glow discharge in CH4-N2 mixtures (as well in these mixtures diluted with argon and helium) was studied experimentally. The dependences of the film growth rate on the discharge current and gas pressure are obtained. The composition (the N/C ratio) and IR absorption spectra of the films are determined. Measurements of the absorption spectra made it possible to identify bonds between C and N atoms. A novel method of carbonitride film deposition in the “double afterglow” mode was proposed. The use of this method appreciably increases the film deposition rate. Possible mechanisms of the formation and destruction of carbonitride films in the active and afterglow phases of the discharge are discussed.  相似文献   

18.
Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophs that, if abundant, may be biogeochemically important in the oceans. We used epifluorescence microscopy and quantitative PCR (qPCR) to examine the abundance of these bacteria by enumerating cells with bacteriochlorophyll a (bChl a) and the light-reaction center gene pufM, respectively. In the surface waters of the Delaware estuary, AAP bacteria were abundant, comprising up to 34% of prokaryotes, although the percentage varied greatly with location and season. On average, AAP bacteria made up 12% of the community as measured by microscopy and 17% by qPCR. In the surface waters of the Chesapeake, AAP bacteria were less abundant, averaging 6% of prokaryotes. AAP bacterial abundance was significantly correlated with light attenuation (r = 0.50) and ammonium (r = 0.42) and nitrate (r = 0.71) concentrations. Often, bChl a-containing bacteria were mostly attached to particles (31 to 94% of total AAP bacteria), while usually 20% or less of total prokaryotes were associated with particles. Of the cells containing pufM, up to 87% were associated with particles, but the overall average of particle-attached cells was 15%. These data suggest that AAP bacteria are particularly competitive in these two estuaries, in part due to attachment to particles.  相似文献   

19.
The relationship between monobacterial films and the preference of harpacticoid copepods for such films was investigated using still water multiple-choice assays with natural biofilm and sterile conditions as controls. Adult Schizopera sp. were most attracted by a heterogeneous natural biofilm, followed by monospecies-biofilms of Rhodovulum sp., Vibrio proteolyticus, and Flexibacter sp. The preferred bacterial films stemmed from different phylogenetic and physiological groups. The results indicated that the harpacticoid Schizopera sp. was effectively and differentially attracted by bacterial films. Since bacteria constitute a substantial portion of the organic carbon available at the sea bottom as nutritive sources for harpacticoid copepods, we subsequently examined the influence of 9 bacterial strains and a natural biofilm as a nutrient source on the growth and reproductive performance of ontogenetic stages (nauplii and copepodids) of Schizopera sp. The food value of bacterial strains was assayed in terms of life table data that provided growth parameters. All variables were affected by the type of food offered. A diet on Rhodovulum sp. resulted in optimal growth performance of nauplii and copepodids demonstrating that bacteria can be used as a sole diet to support postembryonic development. The present study is the first to link behavioral preferences to bacterial biofilms with life history parameters when cultivating harpacticoid copepods on the same bacterial strains as the only diet. This study revealed a discrepancy between the biofilm favored (natural biofilm) and the one leading to maximal reproductive performance (monobacterial film of Rhodovulum sp. MB253) as indicated by major life table data as net reproductive rate (Ro), mean generation time (Tm), and capacity for increase (rc).  相似文献   

20.
X. Xiao  H. Liu  Y. Hu 《Molecular simulation》2013,39(13):1083-1091
A Monte Carlo simulation using the bond fluctuation and cavity diffusion algorithms was adopted to investigate the micro-phase separation of ABC triblock copolymer in ultra-thin film on simple cubic lattice. Simulations reveal that the morphologies of ABC copolymer films are dependent on not only the volume fraction of the middle block B (f B) but also on the ratio of interaction between different kinds of blocks (?(AC)/?(AB)). As for the molecular orientation, the copolymers stretch parallel to the flat surface at lower f B, but tend to align perpendicularly along z direction at higher f B. Furthermore, the chain configuration was discussed in detail. Smaller ?(AC)/?(AB) is beneficial to the formation of a “loop” configuration, whereas, larger ?(AC)/?(AB) would result in a “bridge” configuration of ABC triblock copolymer chains. The formation of micro-phase structures was illustrated intuitively by the molecular orientation and the chain configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号