首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that pretreatment with endotoxin significantly reduced acute pulmonary O2 toxicity in lambs (J. Appl. Physiol. 65: 1579-1585, 1988). One of endotoxin's many effects is to inhibit cytochrome P-450 mono-oxygenation reactions, which are believed to produce toxic O2 species. Therefore, one possible explanation for endotoxin's beneficial effect is that it inhibited P-450-mediated O2 radical production during hyperoxia. To test this hypothesis, we administered a single dose of cimetidine, a noncompetitive inhibitor of P-450 activity, to nine lambs before continuous exposure to greater than 95% O2. Compared with six control O2-exposed lambs, the cimetidine-treated O2-exposed lambs maintained normal gas exchange for a longer period of time (P less than 0.01), accumulated lung water at a slower rate (P less than 0.01), and had normal microvascular permeability after 72 h of O2 exposure. Postmortem levels of antioxidant enzymes in blood-free lung homogenate were not increased in cimetidine-treated lambs. However, the levels of oxidized glutathione were significantly lower in cimetidine-treated lambs, and the ratio of reduced to oxidized glutathione concentrations (GSH/GSSG ratio) was sevenfold higher than the ratio measured in control O2-exposed lambs (P less than 0.001). In four lambs, pretreatment with ranitidine (a drug chemically related to cimetidine but without P-450 inhibitory activity) had no effect either on the time course of O2 injury or on postmortem antioxidants. Microsomes were isolated from blood-free lung of all study animals and P-450 activity of the form 2 isozyme was measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We recently reported that endotoxin infusion before O2 exposure significantly reduced or delayed the onset of pulmonary edema formation and respiratory failure by reducing the oxidant stress of O2 exposure. Despite these beneficial effects of endotoxin treatment, lung microvascular permeability eventually increased, but postmortem lung water content was less than expected. Prolonged O2 breathing blunts or abolishes the pulmonary constrictor response to alveolar hypoxia in some species, and it is possible that the loss of this response could contribute further to edema formation. To determine whether the reduction in lung edema observed in endotoxin-treated, O2-exposed lambs was linked to the preservation of hypoxic pulmonary vasoconstriction (HPV), we measured pulmonary vascular resistance before and after 8 min of isocarbic hypoxia (inspired O2 fraction 0.12) during each day of O2 exposure. In six control lambs, the pressor response to hypoxia was abolished after 72 h in O2, and the lambs developed respiratory failure shortly thereafter. In six endotoxin-treated lambs, HPV was preserved for as long as 144 h of O2 exposure. In two control O2-exposed lambs in whom HPV was abolished, the infusion of either angiotensin or prostaglandin H2 analogue increased pulmonary vascular resistance by greater than 75%. We conclude that in lambs 1) hyperoxia abolishes the pulmonary vascular response to hypoxia, 2) endotoxin pretreatment reduces acute O2-induced lung injury and preserves the pulmonary constrictor response to hypoxia, and 3) the loss of HPV during O2 exposure may be the result of oxidant-mediated injury to the hypoxia response itself and not the result of diffuse damage to the vasoconstrictor effector mechanism.  相似文献   

3.
Ischemic preconditioning (IP) has been shown to protect the lung against ischemia-reperfusion (I/R) injury. Although the production of reactive oxygen species (ROS) has been postulated to play a crucial role in I/R injury, the sources of these radicals in I/R and the mechanisms of protection in IP remain unknown. Since it was postulated that deamination of endogenous and exogenous amines by semicarbazide-sensitive amine oxidase (SSAO) in tissue damage leads to the overproduction of hydrogen peroxide (H2O2), we investigated the possible contribution of tissue SSAO to excess ROS generation and lipid peroxidation during I/R and IP of the lung. Male Wistar rats were randomized into 6 groups: control lungs were subjected to 30 min of perfusion in absence and presence of SSAO inhibitor, whereas the lungs of the I/R group were subjected to 2 h of cold ischemia following the 30 min of perfusion in absence and presence of SSAO inhibitor. IP was performed by two cycles of 5 min ischemia followed by 5 min of reperfusion prior to 2 h of hypothermic ischemia in absence and presence of SSAO inhibitor. Lipid peroxidation, reduced (GSH) and oxidized (GSSG) glutathione levels, antioxidant enzyme activities, SSAO activity, and H2O2 release were determined in tissue samples of the study groups. Lipid peroxidation, glutathione disulfide (GSSG) content, SSAO activity and H2O2 release were increased in the I/R group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were decreased. SSAO activity, H2O2 release, GSSG content and lipid peroxidation were markedly decreased in the IP group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were significantly increased. SSAO activity was found to be positively correlated with H2O2 production in all study groups. Increased lipid peroxidation, SSAO activity, GSSG and H2O2 contents as well as decreased GSH and antioxidant enzyme levels in I/R returned to their basal levels when IP and SSAO inhibition were applied together. The present study suggests that application of IP and SSAO inhibition together may be more effective than IP alone against I/R injury in the lung.  相似文献   

4.
Blood glutathione oxidation during human exercise   总被引:4,自引:0,他引:4  
To examine the effects of increased O2 utilization on the glutathione antioxidant system in blood, eight moderately trained male volunteers were exercised to peak O2 consumption (VO2peak) and for 90 min at 65% of VO2peak on a cycle ergometer. Blood samples were taken during exercise, and for up to 4 days of recovery from submaximal exercise. During exercise to VO2peak, blood reduced glutathione (GSH) and total glutathione [GSH + oxidized glutathione (GSSG)] did not change significantly. Lactate (L), pyruvate (P), and L/P increased significantly from rest values (P less than 0.01). During prolonged submaximal exercise, GSH decreased 60% from control, and GSSG increased 100%. Total glutathione, glucose, pyruvate, and lactate concentrations and L/P did not change significantly during sustained exercise. During recovery, GSH and GSH/GSSG increased from exercise levels and significantly overshot preexercise levels, reaching maximum values after 3 days. Oxidation of GSH during submaximal exercise and its reduction in recovery suggest increased formation of active O2-. species in blood during physical exercise in moderately trained males.  相似文献   

5.
Endotoxin causes neutrophil-independent oxidative stress in rats   总被引:1,自引:0,他引:1  
Endotoxin-induced oxidative stress is investigated in rats by measuring changes in plasma and lung tissue levels of glutathione disulfide (GSSG) using a modified enzymatic assay that allows simultaneous measurement of up to 80 samples. Salmonella enteritidis endotoxin (2 and 20 mg/kg) acutely increased both plasma reduced glutathione and GSSG with a rise in the ratio of GSSG to total glutathione. This increase in GSSG was enhanced by pretreatment with 1,3-bis(2-chloroethyl)1-nitrosourea (BCNU), an inhibitor of the glutathione reductase enzyme. However, there was no significant arteriovenous difference in plasma GSSG across the lung, and lung tissue GSSG did not increase after endotoxin treatment. The increase in plasma GSSG was not blocked by vinblastine-induced neutropenia and could not be reproduced by incubating rat blood in vitro with endotoxin. Receptor antagonists of platelet-activating factor (PAF), at a dose that previously inhibited endotoxin-induced lung injury, attenuated the endotoxin-induced increase in plasma GSSG. We conclude that endotoxin causes neutrophil-independent oxidative stress in rats, which may be enhanced by the action of platelet-activating factor.  相似文献   

6.
Reactive oxygen species are important mediators of cellular damage during endotoxic shock. In order to investigate the hepatic response to the oxidative stress induced by endotoxin, hepatic and plasma glutathione (total, GSH and GSSG), GSSG/GSH ratio as well as Mn-superoxide dismutase and catalase activities were determined during the acute and recovery phases of reversible endotoxic shock in the rat. A significant increase in liver and plasma total glutathione content was observed 5 h after endotoxin treatment (acute phase), followed by a diminution of these parameters below control values at 48 h (recovery phase). The significant increases of GSSG levels and GSSG/GSH ratio are indicative of oxidative stress occurring during the acute phase. Liver Mn-SOD activity showed a similar time dependency as the GSSG/GSH ratio; however, a marked decrease in the liver catalase activity was observed during the process. These results indicate the participation of liver glutathione in the response to endotoxin and the possible use of plasma glutathione levels and GSSG/GSH ratio as indicators of the acute phase during the endotoxic process. (Mol Cell Biochem 159: 115-121, 1996)  相似文献   

7.
Treatment of rats with endotoxin, as late as 24 h after beginning exposure to greater than 95 O2 at 1 atm, increases survival at 72 h from 20-30% to greater than 95% (J. Clin. Invest. 65: 1104, 1980), whereas treatment with corticosteroids reduces survival (Toxicol. Appl. Pharmacol. 47: 367, 1979). Since endotoxin is mitogenic to some cells and glucocorticosteroids decrease DNA synthesis by lung cells, we asked 1) is endotoxin mitogenic to the lung, and, if so, 2) is the mitogenic effect required for endotoxin to produce tolerance to hyperoxia? We found endotoxin administered in vivo does have a mitogenic effect on the lung as indicated by an increased rate of DNA synthesis by lung slices; dexamethasone blocked this effect. However, although dexamethasone given alone markedly diminished survival in hyperoxia, dexamethasone did not impair the protection conferred to rats by endotoxin against the edemogenicity and lethality of hyperoxia. Furthermore, dexamethasone did not diminish the rise of antioxidant enzyme activity in the lungs of endotoxin-treated O2-exposed rats. We conclude endotoxin can produce tolerance to hyperoxia even when its mitogenic action on the lung is substantially diminished.  相似文献   

8.
9.
Hypoxia maintained biological characteristics of CD34(+) cells through keeping lower intracellular reactive oxygen specials (ROS) levels. The effects of normoxia and hypoxia on antioxidant enzymes and glutathione redox state were compared in this study. Hypoxia decreased the mRNA expression of both catalase (CAT) and glutathione peroxidase (GPX), but not affected mRNAs expression of superoxide dismutase (SOD). While the cellular GPX activities under hypoxia were apparently less than those under normoxia, neither SOD activities nor CAT activities were affected by hypoxia. The analysis of glutathione redox status and ROS products showed the lower oxidized glutathione (GSSG) levels, the higher reduced glutathione (GSH) levels, the higher GSH/GSSG ratios, and the less O(2)- and H(2)O(2) generation under hypoxia (versus normoxia). Meanwhile more primary CD34(+)CD38(-) cells were obtained when cultivation was performed under hypoxia or with N-acetyl cysteine (the precursor of GSH) under normoxia. These results demonstrated the different responses of anti-oxidative mechanism between normoxia and hypoxia. Additionally, the present study suggested that the GSH-GPX antioxidant system played an important role in HSPCs preservation by reducing peroxidation.  相似文献   

10.
The hyperoxia-induced increases in the activity of lung glucose-6-phosphate dehydrogenase (G-6-P) and glutathione reductase (GR) after exposure of rats to greater than 97% O2 for 6 days were accompanied by equivalent increases in the amount of the respective immunoreactive proteins. Hyperoxia also increased lung glutathione (GSH) + oxidized glutathione (GSSG) content and the magnitude of this hyperoxic response of increased GSH + GSSG, G-6-P, and GR (maximal 1.3- to 1.8-fold) declined as a function of age during the first 3 wk of life. Fetal rat lung explants cultured 4 days in 95% O2 showed increased G-6-P and GR activity and increased levels of the specific proteins 1.5-fold those of explants at 2 days of culture. We conclude that the hyperoxic response of increased rat lung G-6-P and GR activity in vivo and in vitro involves not just alteration of enzyme activity but also specific increases in the proteins catalyzing the reactions.  相似文献   

11.
The dual role of glutathione as a transducer of S status (A.G. Lappartient and B. Touraine [1996] Plant Physiol 111: 147-157) and as an antioxidant was examined by comparing the effects of S deprivation, glutathione feeding, and H2O2 (oxidative stress) on SO42- uptake and ATP sulfurylase activity in roots of intact canola (Brassica napus L.). ATP sulfurylase activity increased and SO42- uptake rate severely decreased in roots exposed to 10 mM H2O2, whereas both increased in S-starved plants. In split-root experiments, an oxidative stress response was induced in roots remote from H2O2 exposure, as revealed by changes in the reduced glutathione (GSH) level and the GSH/oxidized glutathione (GSSG) ratio, but there was only a small decrease in SO42- uptake rate and no effect on ATP sulfurylase activity. Feeding plants with GSH increased GSH, but did not affect the GSH/GSSG ratio, and both ATP sulfurylase activity and SO42- uptake were inhibited. The responses of the H2O2-scavenging enzymes ascorbate peroxidase and glutathione reductase to S starvation, GSH treatment, and H2O2 treatment were not to glutathione-mediated S demand regulatory process. We conclude that the regulation of ATP sulfurylase activity and SO42- uptake by S demand is related to GSH rather than to the GSH/GSSG ratio, and is distinct from the oxidative stress response.  相似文献   

12.
目的探讨实验性腹膜炎时,内毒素与肺损伤的变化.方法用酵母多糖A腹腔注射制备大鼠急性实验性腹膜炎模型,随机分为模型组和对照组;观察实验性腹膜炎时,肺损伤变化.结果模型组内毒素、肺匀浆脂质过氧化物,以及白细胞计数均明显增高;而还原谷胱甘肽(GSH)明显降低,与对照组比差异有显著性(P<0.05).结论实验性腹膜炎时,内毒素的形成、细菌因子的释放及脂质过化与肺损害有一定的联系.  相似文献   

13.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

14.
Preexposure to hypoxia increased survival and lung reduced glutathione-to-oxidized glutathione ratios (GSH/GSSG) and decreased pleural effusions in rats subsequently exposed to continuous hyperoxia. In addition, lungs from hypoxia-preexposed rats developed less acute edematous injury (decreased lung weight gains and lung lavage albumin concentrations) than lungs from normoxia-preexposed rats when isolated and perfused with hydrogen peroxide (H2O2) generated by xanthine oxidase (XO) or glucose oxidase (GO). In contrast, when perfused with elastase or exposed to a hydrostatic left atrial pressure challenge, lungs isolated from hypoxia-preexposed rats developed the same acute edematous injury as lungs from normoxia-preexposed rats. The mechanism by which hypoxia preexposure conferred protection against H2O2 appeared to depend on hexose monophosphate shunt (HMPS)-dependent increases in lung glutathione redox cycle activity. First, before perfusion with GO, lungs from hypoxia-preexposed rats had increased glutathione peroxidase and glucose 6-phosphate dehydrogenase (but not catalase or glutathione reductase) activities compared with lungs from normoxia-preexposed rats. Second, after perfusion with GO, lungs from hypoxia-preexposed rats had increased H2O2 reducing equivalents, as reflected by increased GSH/GSSG and NADPH/NADPH+, compared with lungs from normoxia-preexposed rats. Third, pretreatment of rats with an HMPS inhibitor, (6-aminonicotinamide) or a glutathione reductase inhibitor, [1,3-bis(2-chloroethyl)-1-nitrosourea] prevented hypoxia-conferred protection against H2O2-mediated acute edematous injury in isolated lungs. These findings suggest that increased detoxification of H2O2 by glutathione redox cycle and HMPS-dependent mechanisms contributes to tolerance to hyperoxia and resistance to H2O2 of lungs from hypoxia-preexposed rats.  相似文献   

15.
Garlic oil, onion oil and one of its constituents, dipropenyl sulfide, all increase, to diverse degrees, glutathione (GSH) peroxidase (GSH:H2O2 oxidoreductase, EC 1.11.1.9) activity in isolated epidermal cells incubated in the presence or absence of the potent tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA). The stimulatory effects of these oils on epidermal GSH peroxidase activity are concentration-dependent and long-lasting, and thus, abolish totally the prolonged inhibitory effect of TPA on this enzyme. Moreover, garlic oil (5 micrograms/ml) inhibits by about 50% TPA-induced ornithine decarboxylase (ODC, L-ornithine carboxy-lyase, EC 4.1.1.17) activity in the same epidermal cell system. This concentration of garlic oil also increases remarkably GSH peroxidase activity and inhibits ODC induction in the presence of various nonphorbol ester tumor promoters. Since the same oil treatments inhibit dramatically the sharp decline in the intracellular ratio of reduced (GSH)/oxidized (GSSG) glutathione caused by TPA, it is suggested that some of the inhibitory effects of garlic and onion oils on skin tumor promotion may result from their enhancement of the natural GSH-dependent antioxidant protective system of the epidermal cells.  相似文献   

16.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

17.
Sulfotransferase catalyzed sulfation is important in the regulation of different hormones and the metabolism of hydroxyl containing xenobiotics. In the present investigation, we examined the effects of hyperoxia on aryl sulfotransferase IV in rat lungs in vivo. The enzyme activity of aryl sulfotransferase IV increased 3- to 8-fold in >95% O2 treated rat lungs. However, hyperoxic exposure did not change the mRNA and protein levels of aryl sulfotransferase IV in lungs as revealed by Western blot and RT-PCR. This suggests that oxidative regulation occurs at the level of protein modification. The increase of nonprotein soluble thiol and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios in treated lung cytosols correlated well with the aryl sulfotransferase IV activity increase. In vitro, rat liver cytosol 2-naphthol sulfation activity was activated by GSH and inactivated by GSSG. Our results suggest that Cys residue chemical modification is responsible for the in vivo and in vitro oxidative regulation. The molecular modeling structure of aryl sulfotransferase IV supports this conclusion. Our gel filtration chromatography results demonstrated that neither GSH nor GSSG treatment changed the existing aryl sulfotransferase IV dimer status in cytosol, suggesting that oxidative regulation of aryl sulfotransferase IV is not caused by dimer-monomer status change.  相似文献   

18.
Normal alveolar epithelial lining fluid contains high levels of glutathione   总被引:7,自引:0,他引:7  
The epithelial cells on the alveolar surface of the human lower respiratory tract are vulnerable to toxic oxidants derived from inhaled pollutants or inflammatory cells. Although these lung cells have intracellular antioxidants, these defenses may be insufficient to protect the epithelial surface against oxidants present at the alveolar surface. This study demonstrates that the epithelial lining fluid (ELF) of the lower respiratory tract contains large amounts of the sulfhydryl-containing antioxidant glutathione (GSH). The total glutathione (the reduced form GSH and the disulfide GSSG) concentration of normal ELF was 140-fold higher than that in plasma of the same individuals, and 96% of the glutathione in ELF was in the reduced form. Compared with nonsmokers, cigarette smokers had 80% higher levels of ELF total glutathione, 98% of which was in the reduced form. Studies of cultured lung epithelial cells and fibroblasts demonstrated that these concentrations of reduced glutathione were sufficient to protect these cells against the burden of H2O2 in the range released by alveolar macrophages removed from the lower respiratory tract of nonsmokers and smokers, respectively, suggesting that the glutathione present in the alveolar ELF of normal individuals likely contributes to the protective screen against oxidants in the extracellular milieu of the lower respiratory tract.  相似文献   

19.
Since the enhancement of the activity of the natural glutathione (GSH)-dependent antioxidant protective system of the epidermal cells appears to inhibit the oxidative challenge presumably linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA), we have compared the effectiveness of diverse intracellular thiol delivery agents as inhibitors of the effects of TPA on GSH metabolism and ornithine decarboxylase (ODC; L-ornithine carboxylase, EC 4.1.1.17) induction in isolated mouse epidermal cells. Here we report at a 2-mM concentration, the monoethyl and monomethyl esters of GSH, N-acetyl-L-cysteine, and L-2-oxothiazolidine-4-carboxylate are all significantly more effective than GSH in inhibiting the sharp decline in the intracellular ratio of reduced GSH/oxidized glutathione (GSSG), the prolonged decrease in GSH peroxidase (GSH:H2O2 oxidoreductase, EC 1.11.1.9) activity, and the induction of ODC activity caused by 1 microM TPA. Moreover, diethyldithiocarbamate prevents totally the initial drop in the GSH/GSSG ratio of TPA-treated cells and is the most potent inhibitor of TPA-decreased GSH peroxidase activity in relation with its remarkable 98% inhibition of TPA-induced ODC activity, suggesting that the potential antitumor-promoting activity of this compound in mouse skin may be far superior to that previously demonstrated by GSH in the initiation-promotion protocol.  相似文献   

20.
萝卜硫素(sulforaphane,SFN)是一种在十字花科植物中含量丰富,且具有抗氧化效应的天然物质。本文基于核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)介导的抗氧化系统,探究不同时长低温暴露对骨骼肌抗氧化酶的影响及SFN对低温暴露骨骼肌抗氧化能力的作用。首先,30只雄性C57BL/6N小鼠随机分为常温对照组(0 h组)、低温暴露1 h组(1 h组)和低温暴露3 h组(3 h组)。其次,40只雄性C57BL/6N小鼠随机分为PBS常温对照组(PBS+Con),PBS低温暴露3 h组(PBS+Cold),SFN常温对照组(SFN+Con)和SFN低温暴露3 h组(SFN+Cold)。小鼠在急性温度干预前腹腔注射4次SFN或等体积PBS。急性低温暴露后,取小鼠骨骼肌,试剂盒检测活性氧(ROS)水平、总抗氧化能力(T-AOC)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量;荧光实时定量PCR检测Nrf2介导的抗氧化酶和参与生成谷胱甘肽相关酶的mRNA转录水平;Western blot检测Nrf2介导的抗氧化酶蛋白表达。结果显示,与0和1 h组相比,3 h组小鼠骨骼肌Nrf 2和抗氧化酶基因(Gpx 1、Hmox1、Cat、Sod 1和Nqo 1)的mRNA转录水平显著降低,ROS水平显著增加。与PBS+Con组相比,PBS+Cold组小鼠骨骼肌Nrf2和抗氧化酶(HMOX1和CAT)蛋白表达、GSH/GSSG比值及T-AOC水平显著降低,而GSSG含量和ROS水平增加。与PBS+Cold组相比,SFN+Cold组小鼠骨骼肌Nrf 2 mRNA及其蛋白表达、抗氧化酶(HMOX1和SOD1)蛋白表达、抗氧化酶基因(Gpx 1、Hmox 1、Cat、Sod 1和Nqo 1)mRNA转录水平、参与GSH生成的酶基因(Gclm和Gss)mRNA转录水平、GSH/GSSG比值以及T-AOC水平显著提高,而GSSG含量和ROS水平显著降低。综上,3 h急性低温暴露降低了Nrf2介导的抗氧化作用。而低温暴露前给予SFN补充,则激活了Nrf2介导的抗氧化酶和谷胱甘肽抗氧化系统,增强了骨骼肌抗氧化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号