首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that C-phycocyanin (PC), an antioxidant biliprotein pigment of Spirulina platensis (a blue-green alga), effectively inhibited doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. Here we investigated the cardioprotective effect of PC against ischemia-reperfusion (I/R)-induced myocardial injury in an isolated perfused Langendorff heart model. Rat hearts were subjected to 30 min of global ischemia at 37 degrees C followed by 45 min of reperfusion. Hearts were perfused with PC (10 microM) or Spirulina preparation (SP, 50 mg/l) for 15 min before the onset of ischemia and throughout reperfusion. After 45 min of reperfusion, untreated (control) hearts showed a significant decrease in recovery of coronary flow (44%), left ventricular developed pressure (21%), and rate-pressure product (24%), an increase in release of lactate dehydrogenase and creatine kinase in coronary effluent, significant myocardial infarction (44% of risk area), and TdT-mediated dUTP nick end label-positive apoptotic cells compared with the preischemic state. PC or SP significantly enhanced recovery of heart function and decreased infarct size, attenuated lactate dehydrogenase and creatine kinase release, and suppressed I/R-induced free radical generation. PC reversed I/R-induced activation of p38 MAPK, Bax, and caspase-3, suppression of Bcl-2, and increase in TdT-mediated dUTP nick end label-positive apoptotic cells. However, I/R also induced activation of ERK1/2, which was enhanced by PC treatment. Overall, these results for the first time showed that PC attenuated I/R-induced cardiac dysfunction through its antioxidant and antiapoptotic actions and modulation of p38 MAPK and ERK1/2.  相似文献   

2.
We tested the hypothesis that myocardial ischemia-reperfusion (I/R)-induced apoptosis is attenuated in transgenic mice overexpressing cardiac A(1) adenosine receptors. Isolated hearts from transgenic (TG, n = 19) and wild-type (WT, n = 22) mice underwent 30 min of ischemia and 2 h of reperfusion, with evaluation of apoptosis, caspase 3 activity, function, and necrosis. I/R-induced apoptosis was attenuated in TG hearts. TG hearts had less I/R-induced apoptotic nuclei (0.88 +/- 0.10% vs. 4.22 +/- 0.24% terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in WT, P < 0.05), less DNA fragmentation (3.30 +/- 0.38-fold vs. 4.90 +/- 0.39-fold over control in WT, P < 0.05), and less I/R-induced caspase 3 activity (145 +/- 25% over nonischemic control vs. 234 +/- 31% in WT, P < 0.05). TG hearts also had improved recovery of function and less necrosis than WT hearts. In TG hearts pretreated with LY-294002 (3 microM) to evaluate the role of phosphosinositol-3-kinase in acute signaling, there was no change in the functional protection or apoptotic response to I/R. These data suggest that cardioprotection with transgenic overexpression of A(1) adenosine receptors involves attenuation of I/R-induced apoptosis that does not involve acute signaling through phosphoinositol-3-kinase.  相似文献   

3.
Successive bouts of endurance exercise are associated with both increased cardiac levels of heat shock protein-72 (HSP-72) and improved cardioprotection against ischemia-reperfusion (I/R)-induced cardiac cell death. Although overexpression of HSP-72 has been shown to be cardioprotective in transgenic animals, it is unclear whether increased levels of HSP-72 are essential for exercise-induced cardioprotection against I/R-mediated cell death. We tested the hypothesis that exercise-induced increases in myocardial levels of HSP-72 are required to achieve exercise-mediated protection against I/R-induced cardiac cell death. To test this postulate, we investigated the effect of preventing the exercise-induced increase in cardiac HSP-72 on myocardial infarction and apoptosis after 50 min of in vivo ischemia and 120 min of reperfusion. Adult male rats remained sedentary or performed successive bouts of endurance exercise in cold (8 degrees C) or warm (22 degrees C) environments. We found that, compared with sedentary control animals, exercise in a warm environment significantly increased myocardial HSP-72 content. In contrast, exercise in the cold environment prevented the exercise-induced increase in myocardial HSP-72 levels. After in vivo myocardial I/R, infarct size was reduced in both exercised groups compared with sedentary animals. Furthermore, compared with sedentary rats, I/R-induced myocardial apoptosis (as indicated by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling-positive nuclei and caspase-3 activity) was attenuated in both groups of exercised animals. Therefore, although HSP-72 has cardioprotective properties, our results reveal that increased myocardial levels of HSP-72 (above control) are not essential for exercise-induced protection against I/R-induced myocardial infarction and apoptosis.  相似文献   

4.
The physiological role of transferrin (Tf) receptor 2 (TfR2), a homolog of the well-characterized TfR1, is unclear. Mutations in TfR2 result in hemochromatosis, indicating that this receptor has a unique role in iron metabolism. We report that HepG2 cells, which endogenously express TfR2, display a biphasic pattern of Tf uptake when presented with ligand concentrations up to 2 µM. The apparently nonsaturating pathway of Tf endocytosis resembles TfR1-independent Tf uptake, a process previously characterized in some liver cell types. Exogenous expression of TfR2 but not TfR1 induces a similar biphasic pattern of Tf uptake in HeLa cells, supporting a role for TfR2 in this process. Immunoelectron microscopy reveals that while Tf, TfR1, and TfR2 are localized in the plasma membrane and tubulovesicular endosomes, TfR2 expression is associated with the additional appearance of Tf in multivesicular bodies. These combined results imply that unlike TfR1, which recycles apo-Tf back to the cell surface after the release of iron, TfR2 promotes the intracellular deposition of ligand. Tf delivered by TfR2 does not appear to be degraded, which suggests that its delivery to this organelle may be functionally relevant to the storage of iron in overloaded states. iron transport; HepG2 cells  相似文献   

5.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

6.
7.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characterized. Previously, we showed that Fe(2)Tf increases TfR2 stability, suggesting that trafficking of TfR2 may be regulated by interaction with its ligand. In the present study, therefore, we sought to identify the mode of TfR2 degradation, to characterize TfR2 trafficking, and to determine how Fe(2)Tf stabilizes TfR2. Stabilization of TfR2 by bafilomycin implies that TfR2 traffics to the lysosome for degradation. Confocal microscopy reveals that treatment of cells with Fe(2)Tf increases the fraction of TfR2 localizing to recycling endosomes and decreases the fraction of TfR2 localizing to late endosomes. Mutational analysis of TfR2 shows that the mutation G679A, which blocks TfR2 binding to Fe(2)Tf, increases the rate of receptor turnover and prevents stabilization by Fe(2)Tf, indicating a direct role of Fe(2)Tf in TfR2 stabilization. The mutation Y23A in the cytoplasmic domain of TfR2 inhibits its internalization and degradation, implicating YQRV as an endocytic motif.  相似文献   

8.
Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H(2)O(2) to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H(2)O(2). PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability.  相似文献   

9.
To explore the role of autophagic flux in the increased susceptibility of the experimental diabetic heart to ischaemia-reperfusion (I/R) injury, we established STZ-induced diabetic mice and performed I/R. In vitro, neonatal mouse cardiomyocytes were subjected to high glucose and hypoxia/reoxygenation challenge to mimic diabetic I/R injury. We found that experimental diabetes aggravated I/R-induced injury than compared with nondiabetic mice. Autophagic flux was impaired in I/R hearts, and the impairment was exacerbated in diabetic mice subjected to I/R with defective autophagosome formation and clearance. Calpains, calcium-dependent thiol proteases, were upregulated and highly activated after I/R of diabetes, while calpain inhibition attenuated cardiac function and cell death and partially restored autophagic flux. The expression levels of Atg5 and LAMP2, two crucial autophagy-related proteins, were significantly degraded in diabetic I/R hearts, alterations that were associated with calpain activation and could be reversed by calpain inhibition. Co-overexpression of Atg5 and LAMP2 reduced myocardial injury and normalized autophagic flux. In conclusion, experimental diabetes exacerbates autophagic flux impairment of cardiomyocytes under I/R stress, resulting in worse I/R-induced injury. Calpain activation and cleavage of Atg5 and LAMP2 at least partially account for the deterioration of autophagic flux impairment.  相似文献   

10.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

11.
Diabetes mellitus-associated ischemic heart disease is a major public burden in industrialized countries. Reperfusion to a previously ischemic myocardium is obligatory to reinstate its function prior to irreversible damage. However, reperfusion is considered ‘a double-edged sword’ as reperfusion per se could augment myocardial ischemic damage, known as myocardial ischemia-reperfusion (I/R) injury. The brief and repeated cycles of I/R given before a sustained ischemia and reperfusion are represented as ischemic preconditioning, which protects the heart from lethal I/R injury. Few studies have demonstrated preconditioning-mediated cardioprotection in the diabetic heart. In contrast, considerable number of studies suggests that myocardial defensive effects of preconditioning are abolished in the presence of chronic diabetes mellitus that raised questions over preconditioning effects in the diabetic heart. It is evidenced that chronic diabetes mellitus-associated deficit in survival pathways, impaired function of mito-KATP channels, MPTP opening and high oxidative stress play key roles in paradoxically suppressed cardioprotective effects of preconditioning in the diabetic heart. These controversial results open up a new area of research to identify potential mechanisms influencing disparities on preconditioning effects in diabetic hearts. In this review, we discussed first the discrepancies on the modulatory role of diabetes mellitus in I/R-induced myocardial injury. Following this, we addressed whether preconditioning could protect the diabetic heart against I/R-induced myocardial injury. Moreover, potential mechanisms pertaining to the attenuated cardioprotective effects of preconditioning in the diabetic heart have been delineated. These are important to be understood for better exploitation of preconditioning strategies in limiting I/R-induced myocardial injury in the diabetic heart.  相似文献   

12.
Transferrin (Tf) is an iron carrier protein that consists of two lobes, the N- and C-lobes, which can each bind a Fe3+ ion. Tf binds to its receptor (TfR), which mediates iron delivery to cells through an endocytotic pathway. Receptor binding facilitates iron release from the Tf C-lobe, but impedes iron release from the N-lobe. An atomic model of the Tf-TfR complex based on single particle electron microscopy (EM) indicated that receptor binding is indeed likely to hinder opening of the N-lobe, thus interfering with its iron release. The atomic model also suggested that the TfR stalks could form additional contacts with the Tf N-lobes, thus potentially further slowing down its iron release. Here, we show that the TfR stalks are unlikely to make strong interactions with the Tf N-lobes and that the stalks have no effect on iron release from the N-lobes of receptor-bound Tf.  相似文献   

13.
Reperfusion therapy is widely used to treat acute myocardial infarction (AMI). However, further injury to the heart induced by rapidly initiating reperfusion is often encountered in clinical practice. A lack of pharmacological strategies in clinics limits the prognosis of patients with myocardial ischemia-reperfusion injury (MIRI). Dihydromyricetin (DMY) is one of the most abundant components in vine tea, commonly known as the tender stems and leaves of Ampelopsis grossedentata. The aim of this study was to evaluate the cardioprotection of DMY against myocardial ischemia-reperfusion (I/R) injury and to further investigate the underlying mechanism. An I/R injury was induced by left anterior descending coronary artery occlusion in adult male rats in vivo and a hypoxia–reoxygenation (H/R) injury in H9c2 cardiomyocytes in vitro. We found that DMY pretreatment provided significant protection against I/R-induced injury, including enhanced antioxidant capacity and inhibited apoptosis in vivo and in vitro. This effect correlated with the activation of the PI3K/Akt and HIF-1α signaling pathways. Conversely, blocking Akt activation with the PI3K inhibitor LY294002 effectively suppressed the protective effects of DMY against I/R-induced injury. In addition, the PI3K inhibitor partially blocked the effects of DMY on the upregulation of Bcl-2, Bcl-xl, procaspase-3, -8, and -9 protein expression and the downregulation of HIF-1α, Bnip3, Bax, Cyt-c, cleaved caspase-3, -8, and -9 protein expression. Collectively, these results showed that DMY decreased the apoptosis and necrosis by I/R treatment, and PI3K/Akt and HIF-1α plays a crucial role in protection during this process. These observations indicate that DMY has the potential to exert cardioprotective effects against I/R injury and the results might be important for the clinical efficacy of AMI treatment.  相似文献   

14.
The transferrin receptor (TfR) binds two proteins critical for iron metabolism: transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. Previous results demonstrated that Tf and HFE compete for binding to TfR, suggesting that Tf and HFE bind to the same or an overlapping site on TfR. TfR is a homodimer that binds one Tf per polypeptide chain (2:2, TfR/Tf stoichiometry), whereas both 2:1 and 2:2 TfR/HFE stoichiometries have been observed. In order to more fully characterize the interaction between HFE and TfR, we determined the binding stoichiometry using equilibrium gel-filtration and analytical ultracentrifugation. Both techniques indicate that a 2:2 TfR/HFE complex can form at submicromolar concentrations in solution, consistent with the hypothesis that HFE competes for Tf binding to TfR by blocking the Tf binding site rather than by exerting an allosteric effect. To determine whether the Tf and HFE binding sites on TfR overlap, residues at the HFE binding site on TfR were identified from the 2.8 A resolution HFE-TfR co-crystal structure, then mutated and tested for their effects on HFE and Tf binding. The binding affinities of soluble TfR mutants for HFE and Tf were determined using a surface plasmon resonance assay. Substitutions of five TfR residues at the HFE binding site (L619A, R629A, Y643A, G647A and F650Q) resulted in significant reductions in Tf binding affinity. The findings that both HFE and Tf form 2:2 complexes with TfR and that mutations at the HFE binding site affect Tf binding support a model in which HFE and Tf compete for overlapping binding sites on TfR.  相似文献   

15.
Isolated hearts subjected to ischemia-reperfusion (I/R) exhibit depressed cardiac performance and alterations in subcellular function. Since hearts perfused at constant flow (CF) and constant pressure (CP) show differences in their contractile response to I/R, this study was undertaken to examine mechanisms responsible for these I/R-induced alterations in CF-perfused and CP-perfused hearts. Rat hearts, perfused at CF (10 ml/min) or CP (80 mmHg), were subjected to I/R (30 min global ischemia followed by 60 min reperfusion), and changes in cardiac function as well as sarcolemmal (SL) Na(+)-K(+)-ATPase activity, sarcoplasmic reticulum (SR) Ca(2+) uptake, and endothelial function were monitored. The I/R-induced depressions in cardiac function, SL Na(+)-K(+)-ATPase, and SR Ca(2+)-uptake activities were greater in hearts perfused at CF than in hearts perfused at CP. In hearts perfused at CF, I/R-induced increase in calpain activity and decrease in nitric oxide (NO) synthase (endothelial NO synthase) protein content in the heart as well as decrease in NO concentration of the perfusate were greater than in hearts perfused at CP. These changes in contractile activity and biochemical parameters due to I/R in hearts perfused at CF were attenuated by treatment with l-arginine, a substrate for NO synthase, while those in hearts perfused at CP were augmented by treatment with N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthase. The results indicate that the I/R-induced differences in contractile responses and alterations in subcellular organelles between hearts perfused at CF and CP may partly be attributed to greater endothelial dysfunction in CF-perfused hearts than that in CP-perfused hearts.  相似文献   

16.
17.
BACKGROUND: PolyADPribose polymerase (PARP) is activated by DNA strand breaks to catalyze the addition of ADPribose groups to nuclear proteins, especially PARP-1. Excessive polyADPribosylation leads to cell death through depletion of NAD+ and ATP. MATERIALS AND METHODS: In vivo PARP activation in heart tissue slices was assayed through conversion of [33P]NAD+ into polyADPribose (PAR) following ischemia-reperfusion (I/R) and also monitored by immunohistochemical staining for PAR. Cardiac contractility, nitric oxide (NO), reactive oxygen species (ROS), NAD+ and ATP levels were examined in wild type (WT) and in PARP-1 gene-deleted (PARP-1(-/-)) isolated, perfused mouse hearts. Myocardial infarct size was assessed following coronary artery occlusion in rats treated with PARP inhibitors. RESULTS: Ischemia-reperfusion (I/R) augmented formation of nitric oxide, oxygen free radicals and PARP activity. I/R induced decreases in cardiac contractility and NAD+ levels were attenuated in PARP-1(-/-) mouse hearts. PARP inhibitors reduced myocardial infarct size in rats. Residual polyADPribosylation in PARP-1(-/-) hearts may reflect alternative forms of PARP. CONCLUSIONS: PolyADPribosylation from PARP-1 and other sources of enzymatic PAR synthesis is associated with cardiac damage following myocardial ischemia. PARP inhibitors may have therapeutic utility in myocardial disease.  相似文献   

18.
Human transferrin receptor 1 (TfR) binds iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes where iron is released in a TfR-facilitated process. Consistent with our hypothesis that TfR binding stimulates iron release from Fe-Tf at acidic pH by stabilizing the apo-Tf conformation, a TfR mutant (W641A/F760A-TfR) that binds Fe-Tf, but not apo-Tf, cannot stimulate iron release from Fe-Tf, and less iron is released from Fe-Tf inside cells expressing W641A/F760A-TfR than cells expressing wild-type TfR (wtTfR). Electron paramagnetic resonance spectroscopy shows that binding at acidic pH to wtTfR, but not W641A/F760A-TfR, changes the Tf iron binding site > or =30 A from the TfR W641/F760 patch. Mutation of Tf histidine residues predicted to interact with the W641/F760 patch eliminates TfR-dependent acceleration of iron release. Identification of TfR and Tf residues critical for TfR-facilitated iron release, yet distant from a Tf iron binding site, demonstrates that TfR transmits long-range conformational changes and stabilizes the conformation of apo-Tf to accelerate iron release from Fe-Tf.  相似文献   

19.
In this study, we established systemic in-vivo evidence from molecular to organism level to explain how diabetes can aggravate myocardial ischemia-reperfusion (I/R) injury and revealed the role of insulin signaling (with specific focus on Akt/GLUT4 signaling molecules). The myocardial I/R injury was induced by the left main coronary artery occlusion for 1 hr and then 3 hr reperfusion in control, streptozotocin (STZ)-induced insulinopenic diabetes, and insulin-treated diabetic rats. The diabetic rats showed a significant decrease in heart rate, and a prolonged isovolumic relaxation (tau) which lead to decrease in cardiac output (CO) without changing total peripheral resistance (TPR). The phosphorylated Akt and glucose transporter 4 (GLUT 4) protein levels were dramatically reduced in both I/R and non-I/R diabetic rat hearts. Insulin treatment in diabetes showed improvement of contractile function as well as partially increased Akt phosphorylation and GLUT 4 protein levels. In the animals subjected to I/R, the mortality rates were 25%, 65%, and 33% in the control, diabetic, and insulin-treated diabetic group respectively. The I/R-induced arrhythmias and myocardial infarction did not differ significantly between the control and the diabetic groups. Consistent with its anti-hyperglycemic effects, insulin significantly reduced I/R-induced arrhythmias but had no effect on I/R-induced infarctions. Diabetic rat with I/R exhibited the worse hemodynamic outcome, which included systolic and diastolic dysfunctions. Insulin treatment only partially improved diastolic functions and elevated P-Akt and GLUT 4 protein levels. Our results indicate that cardiac contractile dysfunction caused by a defect in insulin-stimulated Akt/GLUT4 may be a major reason for the high mortality rate in I/R injured diabetic rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号