首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated previously that chick embryo fibroblasts synthesize and secrete a large chondroitin sulfate proteoglycan (designated PG-M) that binds to fibronectin. We now report the possibility that PG-M interactions with cell surfaces can modulate cell-substrate adhesion. When PG-M was added to the medium, various types of trypsinized cells failed to adhere not only to fibronectin-coated substrates but also to collagen- or vitronectin-coated substrates. Adhesion of the cells to laminin or glycyl-arginyl-glycyl-aspartyl-serine derivatized serum albumin (arginyl-glycyl-aspartic acid-containing molecules with no capacity to bind PG-M) was also inhibited by PG-M. Treatment of the proteoglycan with either proteolytic enzymes or chondroitinase abolished its inhibitory effects on the cell adhesion. These results suggest that direct binding between PG-M and fibronectin, if any, is not a cause of the inhibition by PG-M and that only the proteoglycan form is responsible for the activity. When the immobilization of added PG-M to available plastic surfaces of coated dishes was blocked by pretreating the dishes with serum albumin, the inhibitory effect of PG-M was abolished, suggesting that the immobilized fraction of PG-M can act as a cell adhesion inhibitor. In immobilized form, both cartilage chondroitin sulfate proteoglycan (designated PG-H) and chondroitin sulfate-derivatized serum albumin also inhibited cell adhesion. In contrast, heparan sulfate proteoglycan form LD and heparan sulfate-derivatized serum albumin had far lower inhibitory activities, indicating that the active site for the interaction between cells and PG-M is on the chondroitin sulfate chains.  相似文献   

2.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   

3.
The variation in the sulfation profile of chondroitin sulfate (CS)/dermatan sulfate (DS) chains regulates central nervous system development in vertebrates. Notably, the disulfated disaccharide D-unit, GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate), correlates with the promotion of neurite outgrowth through the DSD-1 epitope that is embedded in the CS moiety of the proteoglycan DSD-1-PG/phosphacan. Monoclonal antibody (mAb) 473HD inhibits the DSD-1-dependent neuritogenesis and also recognizes shark cartilage CS-D, which is characterized by the prominent D-unit and is also recognized by two other mAbs, CS-56 and MO-225. We investigate the oligosaccharide epitope structures of these CS-D-reactive mAbs by ELISA and oligosaccharide microarrays using lipid-derivatized CS oligosaccharides. CS-56 and MO-225 recognized the octa- and larger oligosaccharides, though the latter also bound one unique hexasaccharide D-A-D, where A denotes the disaccharide A-unit GlcUA-GalNAc(4-O-sulfate). The octasaccharides reactive with CS-56 and MO-225 shared a core A-D tetrasaccharide, whereas the neighboring structural elements located on the reducing and/or nonreducing sides of the A-D gave a differential preference additionally to the recognition sequence for each antibody. In contrast, 473HD reacted with multiple hexa- and larger oligosaccharides, which also contained A-D or D-A tetrasaccharide sequences. Consistent with the distinct specificity of 473HD as compared with CS-56 and MO-225, the 473HD epitope displayed a different expression pattern in peripheral mouse organs as revealed by immunohistology, extending the previously reported CNS-restricted expression. The epitope of 473HD, but not of CS-56 or MO-225, was eliminated from DSD-1-PG by digestion with chondroitinase B, suggesting the close association of L-iduronic acid with the 473HD epitope. Despite such supplemental information, the integral epitope remains to be isolated for identification and comprehensive analytical characterisation. Thus novel information on the sugar sequences containing the A-D tetrasaccharide core was obtained for the epitopes of these three useful mAbs.  相似文献   

4.
Preparations of cellular fibronectin from chick embryonic fibroblasts have previously been shown to have hyaluronate-binding activity. However, gel filtration and CsCl isopycnic centrifugation of fibronectin preparations showed that the binding activity was associated with molecules with a density and a molecular weight higher than those of fibronectin. An immunoprecipitation assay using antibodies to the chondroitin sulfate proteoglycan (PG-M) from the mesenchyme of chick embryo limb bud showed that the hyaluronate-binding activity of fibronectin preparations was precipitable with this antibody. The immunoprecipitation analyses also showed that fibronectin preparations as well as conditioned culture medium and extracts of chick embryonic fibroblasts contained a chondroitin sulfate proteoglycan, the protein-enriched core molecules from which were identical to those from PG-M with respect to electrophoretic mobility and immunological reactivity. This proteoglycan was purified from conditioned culture medium and extracts of fibroblasts by dissociative CsCl isopycnic centrifugation. The proteoglycans from medium or extracts gave core derivatives with electrophoretic mobility identical to those from PG-M, and they had equal hyaluronate-binding activities. These results, taken together, suggest that most, if not all, of the hyaluronate-binding activity in preparations of chick cellular fibronectin is due to a proteoglycan identical to PG-M. This proteoglycan was also found to bind directly to fibronectin and to type I collagen, but not to laminin or type IV collagen. It is possible that the fibroblast proteoglycan mediates interactions between hyaluronate, fibronectin, and type I collagen, thereby participating in formation of the pericellular matrix of fibroblasts.  相似文献   

5.
Twelve octasaccharide fractions were obtained from chondroitin sulfate C derived from shark cartilage after hyaluronidase digestion. Their sugar and sulfate composition was assigned by matrix-assisted laser desorption ionization time of flight mass spectrometry. The sequences were determined at low picomole amounts by a combination of enzymatic digestions with high-performance liquid chromatography, and were composed of disaccharide building units including O [GlcUAbeta1-3GalNAc], C [GlcUAbeta1-3GalNAc(6S)], A [GlcUAbeta1-3GalNAc(4S)], and/or D [GlcUA(2S)beta1-3GalNAc(6S)], where 2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate, respectively. As many as 24 different sequences including minor ones were revealed, exhibiting a high degree of structural diversity reflecting the enormous heterogeneity of the parent polysaccharides. Nineteen of them were novel, with the other four reported previously as unsaturated counterparts obtained after digestion with chondroitinase. Microarrays of these structurally defined octasaccharide fractions were prepared using low picomole amounts of their lipid-derivatives to investigate the binding specificity of four commercial anti-chondroitin sulfate antibodies CS-56, MO-225, 2H6, and LY111. The results revealed that multiple unique sequences were recognized by each antibody, which implies that the common conformation shared by the multiple primary sequences in the intact chondroitin sulfate chains is important as an epitope for each monoclonal antibody. Comparison of the specificity of the tested antibodies indicates that CS-56 and MO-225 specifically recognize octasaccharides containing an A-D tetrasaccharide sequence, whereas 2H6 and LY111 require a hexasaccharide as a minimum size for their binding, and prefer sequences with A- and C-units such as C-C-A-C (2H6) or C-C-A-O, C-C-A-A, and C-C-A-C (LY111) for strong binding but require no D-unit.  相似文献   

6.
Administration of azaserine (250 micrograms) to day-4 chick embryos in ovo was shown to induce micromelial limbs. In the present study, biosynthesis of cartilage-characteristic proteoglycan H (PG-H) as an index of limb chondrogenesis was examined in normal and micromelial hind limbs from day-7 chick embryos by biochemical and immunological methods. (1) Metabolic labelling of the micromelial limbs with [6-3H]-glucose and [35S]sulphate, followed by analysis of labelled proteoglycans by glycerol-density-gradient centrifugation under dissociative conditions, showed a marked reduction in PG-H synthesis. (2) PG-H synthesized by micromelial limbs differed from that synthesized by normal limbs in possessing a slower sedimenting velocity and much lower amounts of chondroitin sulphates. (3) The amount of PG-H core protein in micromelial limbs was significantly decreased to about 19% on a per limb basis and about 42% on a per DNA basis of that in normal limbs, as determined by e.l.i.s.a. (4) The transition from PG-M to PG-H during limb formation was retarded in micromelial limbs as judged by an indirect immunofluorescence technique using antibodies against PG-M and PG-H. (5) The deficiency of incorporation of labelled glucose into chondroitin sulphate chains of PG-H in micromelial limbs was partially restored by using [6-3H]-glucosamine as a precursor, suggesting that the synthesis of UDP-N-acetylhexosamine, required for chondroitin sulphate chain synthesis of PG-H in micromelial limbs, was decreased. These results suggest that the reduction in the synthesis of PG-H as well as the production of an abnormal form of PG-H during a critical period of limb morphogenesis may be important factors in explaining the micromelia induced by azaserine.  相似文献   

7.
Our recent studies have shown that chick embryo epiphyseal cartilage synthesizes three distinct species of proteoglycan (PG-H, PG-Lb, and PG-Lt) which are analogous in having glycosaminoglycan side chains of the chondroitin (dermatan) sulfate type but different from one another in regard to the structure of core protein. In the present report, the expression of PG-H and PG-Lb has been studied in developing chick hind limbs (stages 19-33), using antibodies specific for these substances in indirect immunofluorescence. At the onset of cartilage morphogenesis (stage 24), PG-H became recognizable in the cartilage primordia, whereas a parallel section stained for PG-Lb showed no reaction. The first evidence of PG-Lb appearance was seen in a stage 28 cartilage (e.g., tibia) in which the cells in the middiaphysis became elongated in a direction perpendicular to the long axis of the cartilage. The PG-Lb fluorescence was confined to the zone of these flattened, disc-like cells, whereas the fluorescence for PG-H was uniformly distributed throughout the cartilage. With further development of cartilage (stage 29 approximately), the zone of flattened cells spread proximally and distally, and simultaneously large hypertrophied cells appeared at the diaphyseal region. During these zonal changes of cell morphology, the PG-Lb fluorescence remained restricted to the zone of flattened cells. Parallel sections stained for PG-H, in contrast, showed an evenly distributed pattern of the PG-H fluorescence throughout the cartilage. The results indicate that the appearance of PG-Lb is closely associated with the zonal changes of cell shape and orientation along the proximal-distal axis of the developing limb cartilage, and further suggest that the flattened chondrocytes in this particular zone have undergone additional changes in gene expression to form an extracellular matrix of still another chemical property.  相似文献   

8.
Summary Monoclonal antibodies directed against specific carbohydrate epitopes on chondroitin 4-/dermatan sulfate, chondroitin 6-sulfate, keratan sulfate, and a monoclonal antibody directed against the hyaluronate binding region were used to characterize proteoglycans extracted from embryonic chick bone marrow. About half of the proteoglycans separate into the high density fraction on a CsCl gradient. Glycosaminoglycan-specific antibodies recognize proteoglycans from all fractions; this includes an antibody directed against keratan sulfate. Some proteoglycans, principally in the high buoyant density fraction, contain sites recognized by the antibody specific for the hyaluronate binding region. Within limits of detection, all core proteins belong to the high-molecular-weight category, with weights in excess of 212 kD. Antibodies directed against chondroitin 4-/dermatan sulfate and against keratan sulfate primarily bind to extracellular matrix material located in the extracellular spaces and to matrix elements in the pericellular regions of fibroblastic stromal cells. The antibody that recognizes chondroitin 6-sulfate binds to sites on surfaces of fibroblastic stromal cells and also to extracellular matrix material. Little or no antibody binding is detected on surfaces of granulocytic cells. These studies indicate that chondroitin sulfate and keratan sulfate chains are both present in the proteoglycan extract.  相似文献   

9.
Recent results show that type IX collagen isolated from chicken cartilage is associated with one or perhaps two chondroitin sulfate chains. To locate the chondroitin sulfate chain(s) along the type IX collagen molecule, rotary shadowing was performed in the presence of monoclonal antibodies which recognize stubs of chondroitin sulfate generated after chondroitinase ABC digestion. Monoclonal antibodies 9-A-2 and 2-B-6 which recognize stubs of chondroitin 4-sulfate were found to bind specifically to the NC3 domain of type IX collagen, and this binding was dependent on prior digestion of the preparation with chondroitinase ABC. Monoclonal antibody 1-B-5, which recognizes unsulfated stubs of chondroitin sulfate, did not show any specific binding to type IX collagen either with or without chondroitinase ABC digestion. As a control, monoclonal antibody 2C2 was used, which in previous work was shown to bind specifically to an epitope located close to or at the NC2 domain. Binding of this antibody to NC2 was unaffected by chondroitinase ABC digestion, and no specific binding of the antibody to the NC3 domain was detected either before or after chondroitinase ABC digestion.  相似文献   

10.
PTP zeta is a receptor-type protein-tyrosine phosphatase that is synthesized as a chondroitin sulfate proteoglycan and uses pleiotrophin as a ligand. The chondroitin sulfate portion of this receptor is essential for high affinity binding to pleiotrophin. Here, we purified phosphacan, which corresponds to the extracellular domain of PTP zeta, from postnatal day 7 (P7) and P12 rat cerebral cortex (PG-P7 and PG-P12, respectively) and from P20 rat whole brain (PG-P20). The chondroitin sulfate of these preparations displayed immunologically and compositionally different structures. In particular, only PG-P20 reacted with the monoclonal antibody MO-225, which recognizes chondroitin sulfate containing the GlcA(2S)beta 1-3GalNAc(6S) disaccharide unit (D unit). Analysis of the chondroitinase digestion products revealed that GlcA beta 1-3GalNAc(4S) disaccharide unit (A unit) was the major component in these preparations and that PG-P20 contained 1.3% D unit, which was not detected in PG-P7 and PG-P12. Interaction analysis using a surface plasmon resonance biosensor indicated that PG-P20 had approximately 5-fold stronger affinity for pleiotrophin (dissociation constant (KD) = 0.14 nM) than PG-P7 and PG-P12, although all these preparations showed similar low affinity binding to pleiotrophin after chondroitinase ABC digestion (KD = 1.4 approximately 1.6 nM). We also found that shark cartilage chondroitin sulfate D containing approximately 20% D unit bound to pleiotrophin with moderate affinity (KD = 2.7 nM), whereas whale cartilage chondroitin sulfate A showed no binding to this growth factor. These results suggest that variation of chondroitin sulfate plays important roles in the regulation of signal transduction in the brain.  相似文献   

11.
The types and distributions of chondroitin sulfate proteoglycans within developing chick bursae of Fabricius were determined by indirect immunocytochemical analyses using mAb specific for chondroitin/dermatan sulfate epitopes. Analyses obtained from the use of well characterized mAb known to specifically identify chondroitin 4- and dermatan sulfates (antibody 2B6) and chondroitin 6-sulfate (antibody 3B3) were compared with those obtained from two additional mAb raised against chick chondroitin sulfates proteoglycans derived from hemopoietic tissue. The results indicate that chondroitin sulfate compositions of the adjacent lymphopoietic and granulopoietic compartments differ. Chondroitin 6-sulfate, notably absent from lymphopoietic regions, is a major chondroitin sulfate species in granulopoietic regions of day 13 bursae. Moreover, chondroitin 6-sulfate disappears from the granulopoietic compartment in a time course that corresponds to the decline in granulopoietic activity. Simultaneously, there is an apparent increase in chondroitin sulfates associated with developing medullary regions of lymphoid follicles. The content of chondroitin 4-/dermatan sulfates and, most significantly, of chondroitin/dermatan sulfates identified by antibodies raised against chick proteoglycans, increases within developing follicles. As a consequence, by day 18 of incubation, immunostained follicles become clearly demarcated from the connective tissue of the tunica propria. This study provides evidence that chondroitin sulfates are constituents of both lymphopoietic and granulopoietic microenvironments and that subtle changes occur within these proteoglycan structures during bursal development. These developmental changes in chondroitin sulfate compositions are consistent with these molecules playing a functional role in hemopoiesis.  相似文献   

12.
Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(beta1-3)GalNAc(beta1- disaccharide units, partly O-sulfated at different positions. The presence of the disulfated disaccharide D-unit, GlcA2S(beta1-3)GalNAc6S, in the CS moiety of the proteoglycan DSD-1-PG/phosphacan, correlates with neurite outgrowth promotion. The binding of monoclonal antibody (mAb) 473HD to DSD-1-PG, reducing neuronal stimulation, is inhibited by shark cartilage CS-D. CS-D is also recognized by two other mAbs, MO-225 and CS-56. Conformational studies were performed using NMR spectroscopy and molecular modeling on five octasaccharides isolated from shark cartilage CS-D. These octasaccharides present different binding properties toward the three mAbs. The combination of the experimental and theoretical approaches revealed that the sulfate group at position 2 of GlcA in disaccharide D and the presence of an exocyclic negative tail in disaccharides C [GlcA(beta1-3)GalNAc6S] and DeltaC [Delta4,5HexA(alpha1-3)GalNAc6S] are important for antibody recognition.  相似文献   

13.
Proteoglycans were extracted from 14-day chick embryo brains, which had been labelled in vitro with [35S]sulfate or 3H-labelled amino acids. 4.0 M guanidinium chloride (containing proteinase inhibitors) extracted 94% of the 35S-labelled glycoconjugates. Following cesium chloride equilibrium centrifugation, the proteoglycans in each fraction were characterized by chromatography on Sepharose CL-2B. The most dense fraction (D1), which contained no detectable non-proteoglycan proteins, contained a large, aggregating chondroitin sulfate proteoglycan in addition to small chondroitin sulfate and heparan sulfate proteoglycans. The less dense fractions (D2-D6) contained both small chondroitin sulfate and heparan sulfate proteoglycans. Removal of hyaluronate from the D1 sample by digestion with Streptomyces hyaluronidase in the presence of proteinase inhibitors showed that aggregation of the large chondroitin sulfate proteoglycan is hyaluronate-dependent. Aggregation was restored by re-addition of hyaluronate. Reduction and alkylation, which blocked aggregation of a cartilage A1 proteoglycan, did not interfere with aggregation of the large brain proteoglycan.  相似文献   

14.
Monoclonal antibodies have been raised against determinants present in cartilage proteoglycan. Characterization of the specificity of these antibodies indicated that they recognize determinants present in the keratan sulfate glycosaminoglycan chain and on chondroitin sulfate oligosaccharide stubs attached to the proteoglycan core protein after chondroitinase digestion of the proteoglycan (i.e., delta-unsaturated 4- and 6-sulfated and unsulfated chondroitin sulfate on the proteoglycan core). The antibody recognizing keratan sulfate has been used to demonstrate the presence of a keratan sulfate-rich proteoglycan subpopulation that increases with increasing age of animal compared with chondroitin sulfate-rich proteoglycans. Monoclonal antibodies recognizing determinants on chondroitinase-treated proteoglycan have been used in immunohistochemical localization studies determining the differential distribution of 4- and 6-sulfated and unsulfated proteoglycans in tissue sections of cartilage and other noncartilaginous tissues. Digestion with chondroitinase ABC or ACII can be used to differentiate between chondroitin sulfate and dermatan sulfate proteoglycan in different connective tissues. In addition, the presence of a 6-sulfated chondroitin sulfate proteoglycan that is associated with membranes surrounding nerve and muscle fiber bundles is described. Monoclonal antibodies were also raised against the link protein(s) of cartilage proteoglycan aggregate. They have been used in peptide map analyses of link protein and in demonstrating the presence of a high-mannose oligosaccharide chain of the link proteins. The presence of high-mannose oligosaccharide structures on the link protein(s) accounts for the microheterogeneity of the link proteins (link proteins 1, 2, or 3) that is observed on sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

15.
Three antibodies reacting with corneal keratan sulfate proteoglycan were used to detect antigenically related molecules in 11 bovine and 13 embryonic chick tissues. Two monoclonal antibodies recognized sulfated epitopes on the keratan sulfate chain and a polyclonal antibody bound antigenic sites on the core protein of corneal keratan sulfate proteoglycan. Competitive immunoassay detected core protein and keratan sulfate antigens in guanidine HCl extracts of most tissues. Keratan sulfate antigens of most bovine tissues were only partially extracted with guanidine HCl, but the remainder could be solubilized by CNBr treatment of the guanidine-extracted residue. Keratan sulfate and core protein antigens co-eluted with purified corneal keratan sulfate proteoglycan on ion exchange high-performance liquid chromatography (HPLC). Endo-beta-galactosidase digestion of the HPLC-purified keratan sulfate antigens eliminated the binding of monoclonal anti-keratan sulfate antibodies in enzyme-linked immunosorbent assay. Extracts of all 11 bovine tissues, except those from brain and cartilage, could bind both anti-keratan sulfate monoclonal antibodies and anti-core protein polyclonal antibody simultaneously. Binding was sensitive to competition with keratan sulfate and to digestion with endo-beta-galactosidase. These results suggest widespread occurrence of a proteoglycan or sulfated glycoprotein bearing keratan sulfate-like carbohydrate and a core protein resembling that of corneal keratan sulfate proteoglycan.  相似文献   

16.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We have prepared a high buoyant density proteoglycan fraction from the vitreous humor of 13-day-old chick embryos. Using immunoblot analysis coupled with chondroitinase digestion, we demonstrate that the purified preparation is composed predominantly of type IX collagen-like chondroitin sulfate proteoglycan with an alpha 1(IX) chain Mr approximately 23,000 shorter than the known alpha 1 in cartilage type IX. Also different from cartilage type IX is the size of the chondroitin sulfate chain attached to the alpha 2(IX) polypeptide; its Mr is approximately 350,000 indicating that it is approximately 10 times larger in vitreous humor than in cartilage. Examination of vitreous bodies at different developmental stages indicates that a transition occurs in the size of alpha 1(IX) in a well defined temporal pattern; at about stage 31, a cartilage-type alpha 1(IX) of Mr 84,000 is the predominant species, whereas at stage 36 and thereafter, a Mr 61,000 species appears with a concomitant disappearance of the Mr 84,000 species. Immunostaining for type IX collagen followed by electron microscopic observation of 13-day-old chick embryo vitreous humor reveals a regular D-periodic arrangement of vitreous type IX collagen proteoglycan along thin fibrils. It seems possible that the chondroitin sulfate chains of extraordinarily high viscosity and high molecular weight may extend away from the fibrils, thus contributing to structural as well as functional properties of this unique matrix.  相似文献   

18.
Chick embryo epiphyseal cartilage has been shown to contain three different proteoglycan species (PG-H, PG-Lb, and PG-Lt). This report is concerned with the purification and characterization of the third proteoglycan, PG-Lt. The proteoglycan can be separated from the other two by virtue of its low buoyant density in a CsCl density gradient and further purified by consecutive ion exchange and gel chromatography. The final preparation is composed of PG-Lt monomer and PG-Lt oligomer. The amino acid composition of PG-Lt is quite different from that of PG-H and PG-Lb and rather resembles that of collagens with respect to high content of glycine and high degrees of hydroxylation of proline and lysine. PG-Lt monomer is composed of disulfide-bonded subunits of Mr congruent to 120,000 and 190,000 as demonstrated by its gel electrophoretic behavior after reduction with 2-mercaptoethanol. The latter, but not the former, contains dermatan sulfate chains with glucuronic acid/iduronic acid residues and yields a protein-enriched core molecule of Mr congruent to 100,000 after digestion with chondroitinase ABC. Both of the protein subunits are completely digestible with bacterial collagenase. Immunofluorescence microscopic examination of cartilage tissues, using an antibody against PG-Lt, shows that this proteoglycan exists in both the cartilage matrix and perichondrial noncartilagenous region. When chondrocytes are plated onto tissue culture dishes, the antibody stains strands found on the cell surfaces and in the intercellular space of substrate-attached cell layers, suggesting that PG-Lt mediates cell-to-cell and cell-to-substrate contacts.  相似文献   

19.
Platelet heparin neutralizing activity (platelet factor 4) is released from human blood platelets by thrombin in the form of a high molecular weight proteoglycan-platelet factor 4 complex. This complex was partially purified by isoelectric precipitation and gel filtration. At high ionic strength (I = 0.75) the complex dissociates into the active component (mol. wt 29000) and the proteoglycan carrier. The components were separated by gel filtration and the proteoglycan further purified by Na2SO4 treatment. The molecular weight of the purified carrier was 59000. The carbohydrate moieties of the proteoglycan isolated after papain digestion and ion-echange chromatography were shown to consist of chondroitin 4-sulfate by chemical, physical and electrophoretic analysis. The multichain proteoglycan consists of four chondroitin 4-sulfate chains (mol. wt 12000) in covalent linkage to a single polypeptide. The molecular weight (350000) of the fully saturated proteoglycan carrier suggests that 4 moles of platelet factor 4 are bound per mole of proteoglycan and that the carrier occurs in the form of a dimer consisting of 8 moles of platelet factor 4 and 2 moles of proteoglycan. The isolated chondroitin 4-sulfate moieties combine with platelet factor 4 at a binding ratio of one mole of platelet factor 4 per carbohydrate chain. Heparin completely displaces platelet factor 4 from both the saturated proteoglycan and chondroitin 4-sulfate complexes. Heparitin sulfate, dermatan sulfate and chondroitin 6-sulfate also combine stoichiometrically with platelet factor 4 and are displaced by equimolar amounts of heparin. Hyaluronic acid did not combine with platelet factor 4. The relative binding capacities of glycosaminoglycans for platelet factor 4 were shown to be: heparin (100), heparitin sulfate (75), chondroitin 4-sulfate (50), dermatan sulfate (50), chondroitin 6-sulfate (50), and hyaluronic acid (o). Chondroitin 4-sulfate was identified as the major glycosaminoglycan in all platelet subcellular fractions; in addition, the soluble fraction contains a minor amount of hyaluronic acid. Subcellular distribution studies revealed that 55% of both the proteoglycan carrier and platelet factor 4 activity were localized in the “granule rich” fraction. This data together with the low recovery of both these components in the membrane fraction, suggest that they occur together as a complex within specific granules and are released in this form under physiologic conditions.  相似文献   

20.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号