首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Foot-and-mouth disease virus (FMDV) can use a number of integrins as receptors to initiate infection. Attachment to the integrin is mediated by a highly conserved arginine-glycine-aspartic acid (RGD) tripeptide located on the GH loop of VP1. Other residues of this loop are also conserved and may contribute to integrin binding. In this study we have used a 17-mer peptide, whose sequence corresponds to the GH loop of VP1 of type O FMDV, as a competitor of integrin-mediated virus binding and infection. Alanine substitution through this peptide identified the leucines at the first and fourth positions following RGD (RGD+1 and RGD+4 sites) as key for inhibition of virus binding and infection mediated by alphavbeta6 or alphavbeta8 but not for inhibition of virus binding to alphavbeta3. We also show that FMDV peptides containing either methionine or arginine at the RGD+1 site, which reflects the natural sequence variation seen across the FMDV serotypes, are effective inhibitors for alphavbeta6. In contrast, although RGDM-containing peptides were effective for alphavbeta8, RGDR-containing peptides were not. These observations were confirmed by showing that a virus containing an RGDR motif uses alphavbeta8 less efficiently than alphavbeta6 as a receptor for infection. Finally, evidence is presented that shows alphavbeta3 to be a poor receptor for infection by type O FMDV. Taken together, our data suggest that the integrin binding loop of FMDV has most likely evolved for binding to alphavbeta6 with a higher affinity than to alphavbeta3 and alphavbeta8.  相似文献   

2.
Infection by foot-and-mouth disease virus (FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditions renders inactivated foot-and-mouth disease (FMD) vaccines much less effective. Type Asia1 FMDV mutants with increased resistance to acid inactivation were selected to study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of FMDV. Sequencing of capsid-coding regions revealed four amino acid replacements (VP1 N17D, VP2 H145Y, VP2 G192D, and VP3 K153E) in the viral population of the acid-selected 10th passage. We performed single or combined mutagenesis using a reverse genetic system, and our results provide direct experimental evidence that VP2 H145Y or VP1 N17D substitution confers an acid-resistant phenotype to type Asia1 FMDV.  相似文献   

3.
主要探讨了T细胞免疫原TI对口蹄疫疫苗的免疫增强作用。设计并原核表达产生了一种包含口蹄疫病毒VP1,VP4,3A和3D蛋白上多个T细胞表位与两个通用T细胞表位的T细胞免疫原,命名为TI;同时表达了O和Asia 1两个型口蹄疫病毒 VP1 蛋白的串联编码基因,表达产物命名为OA-VP1。将上述T细胞免疫原分别与OA-VP1和口蹄疫灭活疫苗按不同剂量组合免疫小鼠,于免疫后不同时间测定各组小鼠的体液与细胞免疫应答情况。采用微量中和试验检测小鼠O型和Asia1型中和抗体,采用流式细胞检测技术和测定γ-干扰素的水平来分析不同免疫组小鼠细胞免疫的水平。结果显示,与灭活疫苗或OA-VP1单独免疫组相比,添加TI抗原后灭活疫苗 (P<0.01) 和OA-VP1免疫组(P<0.05)小鼠均能产生高水平的特异性中和抗体;且CD4+ T细胞数量显著增多,IFN-γ产生水平显著升高 (P<0.01)。说明TI抗原具有很好的诱导特异性体液与细胞免疫应答的作用,是一种很好的免疫增效剂,可作为口蹄疫蛋白亚单位疫苗和灭活疫苗中的一种有效成分,以提高疫苗的免疫效果。  相似文献   

4.
VP1, a pivotal capsid protein encoded by the foot-and-mouth disease virus (FMDV), plays an important role in receptor-mediated attachment and humoral immune responses. Previous studies show that amino acid changes in the VP1 protein of cell culture-adapted strains of FMDV alter the properties of the virus. In addition, FMDV VP1 modulates host IFN signal transduction. Here, we examined the ability of cell culture-adapted FMDV VP1(83K) and wild-type FMDV VP1(83E) to evade host immunity by blocking mitochondrial antiviral signaling protein (MAVS)/TNF Receptor Associated Factor 3 (TRAF3) mediated cellular innate responses. Wild-type FMDV VP1(83E) interacted specifically with C-terminal TRAF3-binding site within MAVS and this interaction inhibited binding of TRAF3 to MAVS, thereby suppressing interferon-mediated responses. This was not observed for cell culture-adapted FMDV VP1(83K). Finally, chimeric FMDV harboring VP1(83K) showed very low pathogenicity in pigs. Collectively, these data highlight a critical role of VP1 with respect to suppression of type-I IFN pathway and attenuation of FMDV by the E83K mutation in VP1.  相似文献   

5.
Five poliovirus recombinants containing sequences corresponding to foot-and-mouth disease virus (FMDV) antigenic sites were constructed. Viable virus was recovered from four of these plasmids, in which the VP1 beta B-beta C loop (antigenic site 1) of poliovirus type 1 Sabin had been replaced with sequences derived from the VP1 beta G-beta H loop (antigenic site 1) of FMDV O1 Kaufbeuren (O1K), chimera O1.1 (residues 141 to 154), chimera O1.2 (residues 147 to 156), and chimera O1.3 (residues 140 to 160) or from the beta B-beta C loop of VP1 (antigenic site 3) in chimera O3.1 (residues 40 to 49). One chimera (O1.3) was neutralized by FMDV-specific polyclonal serum and monoclonal antibodies directed against antigenic site 1 of FMDV. Chimeras O1.3 and O3.1 induced site-specific FMDV-neutralizing antibodies in guinea pigs. Chimera O1.3 was capable of inducing a protective response against FMDV challenge in some guinea pigs.  相似文献   

6.
Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals that is caused by foot-and-mouth disease virus (FMDV). To replicate efficiently in vivo, FMDV has evolved methods to circumvent host antiviral defense mechanisms, including those induced by interferons (IFNs). Previous research has focused on the effect of FMDV Lpro and 3Cpro on type I IFNs. In this study, FMDV VP3 was found to inhibit type II IFN signaling pathways. The overexpression of FMDV VP3 inhibited the IFN-γ-triggered phosphorylation of STAT1 at Tyr701 and the subsequent expression of downstream genes. Mechanistically, FMDV VP3 interacted with JAK1/2 and inhibited the tyrosine phosphorylation, dimerization and nuclear accumulation of STAT1. FMDV VP3 also disrupted the assembly of the JAK1 complex and degraded JAK1 but not JAK2 via a lysosomal pathway. Taken together, the results reveal a novel mechanism used by which FMDV VP3 counteracts the type II IFN signaling pathways.  相似文献   

7.
【目的】口蹄疫病毒(Foot-and-Mouth Disease Virus,FMDV)通过结构蛋白VP1 G-H环上高度保守的精氨酸-甘氨酸-天门冬氨酸(Arg-Gly-Asp,RGD)基序与整联蛋白结合起始病毒的感染,但FMDV是RNA病毒,在环境条件变化时,FMDV能够以非RGD的途径起始病毒的感染。为了研究FMDV Asia1/JS/China/05田间舌皮毒经两种不同的途径短期传代后细胞受体结合基序RGD的变异。【方法】采用RT-PCR方法扩增FMDV Asia1/JS/China/05田间毒、田间毒的乳鼠适应毒第四代(MF4)和接种田间毒的牛同居感染的猪水泡病料适应细胞的第八代毒(PBF8)结构蛋白VP1基因,并对不同病毒VP1基因的PCR产物测序和cDNA文库测序。【结果】以含RGD受体结合基序为优势的田间毒在乳鼠上短期传代后出现了含精氨酸-丝氨酸-天门冬氨酸(Arg-Ser-Asp,RSD)和RGD受体结合基序的混合种群,而同居感染后的细胞传代病毒种群则以含精氨酸-天门冬氨酸-天门冬氨酸(Arg-Asp-Asp,RDD)受体结合基序为优势种群。【结论】发现了含RGD受体结合位点为优势的FMDV种群,经不同的宿主短期传代后产了含RSD或RDD受体结合基序的优势种群,该发现不仅增加了保守基序RGD发生替换的FMDV变异株的数量,而且为FMDV的细胞识别和宿主嗜性的改变等进一步研究奠定了物质基础。  相似文献   

8.
Song H  Fang W  Wang Z  Zheng D  Du J  Li H  Li Y  Qiu B 《Biotechnology letters》2004,26(16):1277-1281
A codon optimized DNA sequence coding for foot-and-mouth disease virus (FMDV) capsid protein complex epitopes of VP1 amino acid residues 21-40, 135-160, and 200-213 was genetically fused to the C-terminal end of a glutathione-S-transferase (GST) gene in pGEX-6P-1 vector with the synonymous codons preferred by Escherichia coli . The gene was synthesized using PCR and subsequently expressed in E. coli producing an intracellular, soluble fusion protein that retained antigenicity associated with FMDV antibodies by western blot analysis. The chimera was purified from bacterial lysates by affinity chromatography and could be used in ELISA tests for antibodies against FMDV.  相似文献   

9.
Synthetic peptides representing regions of the VP1 protein of foot-and-mouth disease virus strain 01 Kaufbeuren were screened for their ability to stimulate proliferation of PBMC from virus vaccinated cattle. Sites were identified at residue 21-40 (peptide FMDV32) and in the region C-terminal to residue 161. Cells responding to FMDV32 were MHC class II-restricted, CD4+ and secreted IL-2. Thus, this region is defined as a Th site. Of 19 virus vaccinated Friesian cattle, 89% (17/19) responded to purified virus while 37% (7/19; 41% of virus responders) also responded to FMDV32 suggesting that this site is immunodominant for the cattle used. Furthermore, immunisation of FMDV32 responder and non-responder cattle with a related peptide, FMDV5 (FMDV32 co-linearly synthesized with the 141-160 VP1 B cell site), induced neutralizing antibody and a virus-specific T cell population in the FMDV32-responder but not the non-responder animals.  相似文献   

10.
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e–GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e–GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e–GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.  相似文献   

11.
A major antibody combining site on foot and mouth disease virus (FMDV) serotype O1K has been identified in a predicted surface helix of viral protein 1 (VP1) between amino acid residues 144 and 159. A hexadecapeptide covering this sequence elicits high titers of antibodies that specifically recognize and neutralize FMDV. The high quality of the immune response is attributed to a particularly stable conformation of the antigenic amino acid sequence, which is most likely an alpha-helix.  相似文献   

12.
We present sequence data from two genomic regions of foot-and-mouth disease virus (FMDV) subjected to several experimental passage regimens. Maximum-likelihood estimates of the nonsynonymous-to-synonymous rate ratio parameter (d(N)/d(S)) suggested the action of positive selection on some antigenic sites of the FMDV capsid during some experimental passages. These antigenic sites showed an accumulation of convergent amino acid replacements during massive serial cytolytic passages and also in persistent infections of FMDV in cell culture. This accumulation was most significant at the antigenic site A (the G-H loop of capsid VP1), which includes an Arg-Gly-Asp (RGD) cellular recognition motif. Our analyses also identified a subregion of VP3, part of the fivefold axis of FMDV particles, that also appeared to be subjected to positive selection of amino acid replacements. From these results, we can conclude that under the restrictive conditions imposed either by the presence of the monoclonal antibodies, by the persistent infections, or by the competition processes established between different variants of the viral population, amino acid replacement in some capsid-coding regions can be positively selected toward an increase of those mutants with a higher capability to infect the cell.  相似文献   

13.
Chemokine-mediated recruitment of leukocytes in vivo depends on interactions with cell surface glycosaminoglycans. Lymphotactin, the unique member of the "C" chemokine subclass, is a highly basic protein that binds heparin, a glycosaminoglycan, with high affinity (approximately 10 nm). We detected lymphotactin-heparin binding by NMR and mapped this interaction to a narrow surface that wraps around the protein. Substitutions in and around this binding site and surface plasmon resonance analysis of heparin binding affinity identified two arginine residues of lymphotactin as critical for glycosaminoglycan binding. Both arginine mutant proteins and the combined double mutant had dramatically diminished in vivo activity in a leukocyte recruitment assay, suggesting that the lymphotactin-glycosaminoglycan interactions detected in vitro are important for the function of this chemokine. Our results demonstrate that like other chemokines, lymphotactin utilizes highly specific glycosaminoglycan-binding sites that represent potential targets for drug development.  相似文献   

14.
口蹄疫是由口蹄疫病毒(Foot-and-mouth dis-ease virus,FMDV)感染引起的偶蹄动物(猪、牛、羊、骆驼等)共患的一种急性、烈性、接触性传染病。FMDV是小核糖核酸病毒科(Picornaviridae)口蹄疫病毒属(Aphthovirus)的成员,有7个血清型,分别为O、A、C、Asia1、SAT1、SAT2、SAT3,完整  相似文献   

15.
The integrin alpha(v)beta3 has been shown to act as the receptor for internalization of foot-and-mouth disease virus (FMDV) (A12), with attachment being through a highly conserved RGD motif located on the G-H loop of viral capsid protein VP1. In addition, however, we have recently shown that efficient infection of culture-grown cells by FMDV (O1BFS) requires binding to cell surface heparan sulfate. In this study, we have used a solid-phase receptor binding assay to characterize the binding by FMDV to purified alpha(v)beta3 in the absence of heparan sulfate and other cell surface components. In this assay, FMDV (O1BFS) successfully replicated authentic ligand binding by cellular alpha(v)beta3 in terms of its high affinity, dependence on divalent cations, and activation by manganese ions. Virus binding to this preparation of alpha(v)beta3 was exquisitely sensitive to competition by short RGD-containing peptides (50% inhibition at < 10(-8) M peptide), and this inhibition was highly sequence specific, with the equivalent RGE peptide being at least 10(4) fold less effective as a competitor. Representative viruses of the other six serotypes of FMDV bound to alpha(v)beta3 in a similar RGD-specific manner, although significant differences in sensitivity to RGD peptides suggest that the affinity of the different FMDV serotypes for alpha(v)beta3 is influenced, in part, by the variable amino acid residues in the VP1 G-H loop on either side of the RGD.  相似文献   

16.
Analysis of neutralizing epitopes on foot-and-mouth disease virus.   总被引:18,自引:11,他引:7       下载免费PDF全文
For the investigation of the antigenic determinant structure of foot-and-mouth disease virus (FMDV), neutralizing monoclonal antibodies (MAbs) against complete virus were characterized by Western blot (immunoblot), enzyme immunoassay, and competition experiments with a synthetic peptide, isolated coat protein VP1, and viral particles as antigens. Two of the four MAbs reacted with each of these antigens, while the other two MAbs recognized only complete viral particles and reacted only very poorly with the peptide. The four MAbs showed different neutralization patterns with a panel of 11 different FMDV strains. cDNA-derived VP1 protein sequences of the different strains were compared to find correlations between the primary structure of the protein and the ability of virus to be neutralized. Based on this analysis, it appears that the first two MAbs recognized overlapping sequential epitopes in the known antigenic site represented by the peptide, whereas the two other MAbs recognized conformational epitopes. These conclusions were supported and extended by structural analyses of FMDV mutants resistant to neutralization by an MAb specific for a conformational epitope. These results demonstrate that no amino acid exchanges had occurred in the primary antigenic site of VP1 but instead in the other coat proteins VP2 and VP3, which by themselves do not induce neutralizing antibodies.  相似文献   

17.
Functional reproduction of discontinuous antigenic site D of foot-and-mouth disease virus (FMDV) has been achieved by means of synthetic peptide constructions that integrate into a single molecule each of the three protein loops that define the antigenic site. The site D mimics are designed on the basis of the X-ray structure of FMDV type C-S8c1 with the aid of molecular dynamics, so that the five residues assumed to be involved in antigenic recognition are located on the same face of the molecule, exposed to solvent and defining a set of native-like distances and angles. The designed site D mimics are disulphide-linked heterodimers that consist of a larger unit containing VP2(71-84), followed by a polyproline module and by VP3(52-62), and a smaller unit corresponding to VP1(188-194). Guinea pig antisera to the peptides recognize the viral particle and compete with site D-specific monoclonal antibodies, while inoculation with a simple (non-covalently bound) admixture of the three VP1-VP3 sequences yields no detectable virus-specific serum conversion. Similar results have been reproduced in two cattle. Antisera to the peptides are also moderately neutralizing of FMDV in cell culture and partially protective of guinea pigs against challenge with the virus. These results demonstrate functional mimicry of the discontinuous site D by the peptides, which are therefore obvious candidates for a multicomponent peptide-based vaccine against FMDV.  相似文献   

18.
19.
口蹄疫病毒结构蛋白氨基酸的变化是病毒抗原性变异的分子基础,大部分抗原表位位于主要的免疫原蛋白VP1上,部分非线性抗原表位位于VP2和VP3上。本研究首次成功测定了 Asia1 型口蹄疫病毒(YNBS/58)四种结构蛋白基因( p1 区)的核苷酸序列,全长 2199 个碱基,编码 733 个氨基酸,该基因与 Ind63/72、Pka3/54、Israel、China/99、C1/Germany、A22、ZIM7/83/2 毒株的 p1 基因核苷酸序列同源性分别为 88. 4%、86. 0%、89. 3%、68.6%、67.6%、66.8%、50.3%,推导的氨基酸序列同源性分别为 94.1%、93.2%、95.1%、79.9%、77.0%、76.5%、58.1%;将YNBS/58株与 Ind63/72、Pka3/54、Israel株的 vp1、vp2、vp3、vp4 基因和编码蛋白分别进行同源性比较,发现VP1的序列变异最大,VP2、VP3、VP4次之,且VP1的氨基酸变异主要集中在 42-50 位和 137-156 位。实现了YNBS/58株结构蛋白基因在大肠杆菌中的高效表达,其表达的融合蛋白以包涵体形式存在,分子量约为88kDa,占菌体总蛋白的16%左右,并利用镍柱对目的蛋白进行了纯化,纯度达 90%以上,本实验为进一步研究 A sia1型口蹄疫病毒的分子流行病学、p1基因及其编码蛋白的生物学功能奠定了基础。  相似文献   

20.
Foot-and-mouth disease (FMD) is caused by the FMD virus (FMDV) and results in severe economic losses in livestock farming. For rapid FMD diagnostic and therapeutic purposes, an effective antibody against FMDV is needed. Here, we developed a high-affinity antibody against FMDV by FACS-based high throughput screening of a random library. With the FITC-conjugated VP1 epitope of FMDV and high-speed FACS sorting, we screened the synthetic antibody (scFv) library in which antibody variants are displayed in the periplasm of Escherichia coli. After three rounds of sorting, we isolated one antibody fragment (#138-scFv) against the VP1 epitope of FMDV. Next, to improve its affinity, a mutation library of #138-scFV was constructed by error-prone PCR and screened by FACS. After three rounds of sorting, we isolated one antibody (AM-32 scFv), which has a higher binding affinity (KD = 42.7 nM) than that of the original #138-scFv. We also confirmed that it specifically binds to whole inactivated FMDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号