首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a glutaraldehyde-tannic acid-saponin fixative to improve the preservation of actin filaments in dividing HeLa cells during preparation for thin sectioning. The contractile ring in the cleavage furrow is composed of a parallel array of actin filaments that circle the equator. We show that many of these actin filaments are arranged in small bundles. These bundles consist of about 25 filaments throughout cytokinesis. For comparison, filopodia on these cells have about 23 actin filaments packed at a higher density than the filaments in the contractile ring bundles. Some of the contractile ring actin filaments appear to radiate out from electron-dense sites on the plasma membrane. The contractile ring also has a large number of short filaments 13 nm in diameter that closely resemble filaments formed from purified human cytoplasmic myosin. These thick filaments are aligned circumferentially and interdigitate with the actin filaments, as expected for a sliding filament mechanism of tension generation. There are no long actin filaments in the mitotic spindle, but there are a large number (400 to 1000 per μm 3) of very short filaments identical in appearance to actin filaments in other parts of these cells. These short filaments may account for the reported staining of the mitotic spindle with fluorescent antibodies to actin and with fluorescent myosin fragments.  相似文献   

2.
Association of spectrin with desmin intermediate filaments   总被引:5,自引:0,他引:5  
The association of erythrocyte spectrin with desmin filaments was investigated using two in vitro assays. The ability of spectrin to promote the interaction of desmin filaments with membranes was investigated by electron microscopy of desmin filament-erythrocyte inside-out vesicle preparations. Desmin filaments bound to erythrocyte inside-out vesicles in a spectrin-dependent manner, demonstrating that spectrin is capable of mediating the association of desmin filaments with plasma membranes. A quantitative sedimentation assay was used to demonstrate the direct association of spectrin with desmin filaments in vitro. When increasing concentrations of spectrin were incubated with desmin filaments, spectrin cosedimented with desmin filaments in a concentration-dependent manner. At near saturation the spectrin:desmin molar ratio in the sedimented complex was 1:230. Our results suggest that, in addition to its well characterized associations with actin, spectrin functions to mediate the association of intermediate filaments with plasma membranes. It might be that nonerythrocyte spectrins share erythrocyte spectrin's ability to bind to intermediate filaments and function in nonerythroid cells to promote the interaction of intermediate filaments with actin filaments and/or the plasma membrane.  相似文献   

3.
Electron microscopic studies have been carried out on human platelets in the clot retraction. In the early stage of clot formation, platelets send out filopodia, in which thin filaments run longitudinally. The thin filaments are often observed to attach to the cell membrane where fibrin strands bind from the extracellular surface. In the later stage of clot formation, thick filaments become observable, mainly in the cell body of the platelets. These thick filaments are arranged to form an ordered array, and thin filaments run parallel to them. The thin filaments often attach to the end of the thick filaments. However, thin filaments are not seen between the arrays of thick filaments. Similar structures are also observed in the cytoskeleton of the contracted platelet. These filaments closely resemble the purified myosin aggregates formed under low ionic strength. Thus, during clot retraction, both actin and myosin in platelets are reorganized into thin and thick filaments, respectively.  相似文献   

4.
THE ULTRASTRUCTURE OF THE Z DISC IN SKELETAL MUSCLE   总被引:30,自引:30,他引:0       下载免费PDF全文
This electron microscopic study deals with the structure of the Z disc of frog's skeletal muscle, with special regard to the I filaments—whether they pass through the Z disc or terminate at it. In most longitudinal sections the I filaments terminate as rod-like projections on either side of the Z disc, one I filament on one side lying between two I filaments on the opposite side. This indicates that the I filaments are not continuous through the Z disc. The rod-like projections are often seen to consist of filaments (denoted as Z filaments) which meet at an angle. In cross-sections through the Z region the I filaments and Z filaments form tetragonal patterns. The I filaments are situated in the corners of the squares; the oblique Z filaments form the sides of squares. The tetragonal pattern formed by the Z filaments is rotated 45 degrees with respect to the tetragons formed by the I filaments on both sides of Z. This structural arrangement is interpreted to indicate that each I filament on one side of the Z disc faces the center of the space between four I filaments on the opposite side of Z and that the interconnection is formed by four Z filaments.  相似文献   

5.
Antibody against the intermediate-sized filaments from gizzard smooth muscle was used to determine the presence or absence of reacting 10-nm filaments in different cell types. The antibody against gizzard 10-nm filaments reacted with filaments in cultured smooth muscle cells, skeletal myotubes and postmitotic skeletal myoblasts. It did not bind to the 10-nm filaments present in replicating presumptive myoblasts and fibroblasts, or the 10-nm filaments in spinal ganglion cells.  相似文献   

6.
Previous studies demonstrated that actin filaments have variable twist in which the intersubunit angles vary by approximately +/- 10 degrees within a filament. In this work we show that this variability was unchanged when different methods were used to prepare filaments for electron microscopy. We also show that actin-binding proteins can modulate the variability in twist. Three preparations of actin filaments were photographed in the electron microscope: negatively stained filaments, replicas of rapidly frozen, etched filaments, and frozen hydrated filaments. In addition, micrographs of actin + tropomyosin + troponin (thin filaments), of actin + myosin S1 (decorated filaments), and of filaments frayed from the acrosomal process of Limulus sperm (Limulus filaments) were obtained. We used two independent methods to measure variable twist based on Fourier transforms of single filaments. The first involved measuring layer line intensity versus filament length and the second involved measuring layer line position. We measured a variability in the intersubunit angle of actin filaments of approximately 12 degrees independent of the method of preparation or of measurement. Thin filaments have 15 degrees of variability, but the increase over pure actin is not statistically significant. Decorated filaments and Limulus filaments, however, have significantly less variability (approximately 2 and 1 degree, respectively), indicating a torsional stiffening relative to actin. The results from actin alone using different preparative methods are evidence that variable twist is a property of actin in solution. The results from actin filaments in the presence of actin-binding proteins suggest that the angular variability can be modulated, depending on the biological function.  相似文献   

7.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

8.
The effect of C-protein on the assembly reaction of myosin was studied by flow birefringence, electron microscopy, and ultracentrifugation. Myosin filaments were formed by dilution to a lower ionic strength. Thinner filaments of 70-110 A in diameter were formed in the presence of C-protein. When dilution was effected by moderately slow dilution (dilution time of 0.5-2 min) or by stepwise dilution, C-protein favored the formation of longer filaments. When dilution was effected by even slower dilution (dilution time above 2 min), C-protein favored the formation of shorter filaments. Longer filaments formed by slow dilution incorporated more C-protein than shorter ones formed by faster dilution. Addition of C-protein to a solution of myosin filaments caused association of the filaments into longer filaments. The elongation effect was slower and stronger for longer filaments.  相似文献   

9.
We measured, by fluorescence correlation spectroscopy, the motion of actin filaments in solution during hydrolysis of ATP by acto-heavy meromyosin (acto-HMM). The method relies on the fact that the intensity of fluorescence fluctuates as fluorescently labeled actin filaments enter and leave a small sample volume. The rapidity of these number fluctuations is characterized by the autocorrelation function, which decays to 0 in time that is related to the average velocity of translation of filaments. The time of decay of the autocorrelation function of bare actin filaments in solution was 10.59 +/- 0.85 s. Strongly bound (rigor) heads slowed down the diffusion. Direct observation of filaments under an optical microscope showed that addition of HMM did not change the average length or flexibility of actin filaments, suggesting that the decrease in diffusion was not due to a HMM-induced change in the shape of filaments. Rather, slowing down of translational motion was caused by an increase in the volume of the diffusing complex. Surprisingly, the addition of ATP to acto-HMM accelerated the motion of actin filaments. The acceleration was the greatest at the low molar ratios of HMM:actin. Direct observation of filaments under an optical microscope showed that in the presence of ATP the average length of filaments did not change and that the filaments became stiffer, suggesting that acceleration of diffusion was not due to an ATP-induced increase in flexibility of filaments. These results show that some of the energy of splitting of ATP is impaired to actin filaments and suggest that 0.06 +/- 0.02 of HMM interferes with the diffusion of actin filaments during hydrolysis of ATP.  相似文献   

10.
Ordered arrays of thin filaments (65 A diameter) along with other apparently random arrangements of thin and thick filaments (100–200 A diameter) are observed in contracted guinea pig taenia coli rapidly fixed in glutaraldehyde. The thin-filament arrays vary from a few to more than 100 filaments in each array. The arrays are scattered among isolated thin and thick filaments. Some arrays are regular such as hexagonal; other arrays tend to be circular. However, few examples of rosettes with regular arrangements of thin filaments surrounding thick filaments are seen. Optical transforms of electron micrographs of thin-filament arrays give a nearest-neighbor spacing of the thin filaments in agreement with the "actin" filament spacing from x-ray diffraction experiments. Many thick filaments are closely associated with thin-filament arrays. Some thick filaments are hollow circles, although triangular shapes are also found. Thin-filament arrays and thick filaments extend into the cell for distances of at least a micron. Partially relaxed taenia coli shows thin-filament arrays but few thick filaments. The suggestion that thick filaments aggregate prior to contraction and disaggregate during relaxation is promoted by these observations. The results suggest that a sliding filament mechanism operates in smooth muscle as well as in striated muscle.  相似文献   

11.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

12.
Immunofluorescence microscopy was used to follow the rearrangement of keratin filaments and vimentin filaments during mitosis in Vero and HeLa cell lines. The experiment results showed that the three dimensional organization and structure of intermediate filaments changed drastically during mitosis. The behavior of intermediate filaments was different in these two epithelial cell lines. In mitotic Vero cells the keratin filaments and vimentin filaments maintained their filamentous structure and formed a cage around the mitotic apparatus. In mitotic HeLa cells the keratin filaments and vimentin filaments reorganized extensively and formed granular cytoplasmic bodies. The ratio of granular cytoplasmic body formation changed in different mitotic phase. The interphase intermediate filament network was reconstructed after mitosis. It is proposed that the state of intermediate filament network in these cells is cell cycle-dependent and intermediate filaments may have some skeletal role in mitosis.  相似文献   

13.
The interaction of isolated flagellar filaments of Bacillus brevis var. G.-B. P+ with skeletal muscle myosin has been investigated. Bacterial flagellar filaments co-precipitate with myosin at low ionic strength (at the conditions of myosin aggregation). Addition of bacterial flagellar filaments to myosin led to inhibition of its K+-EDTA- and Ca2+-ATPase activity, but had no influence on Mg2+-ATPase. Monomeric protein of bacterial flagella filaments (flagellin) did not co-precipitate with myosin and had no influence on its ATPase activity. The flagella filaments did not co-precipitate with myosin in the presence of F-actin if it was mixed with myosin before the filaments. If the flagella filaments were added to myosin solution before the addition of F-actin the amount of filaments and actin in myosin precipitate were comparable. In this case the presence of flagella filaments decreased activation of myosin Mg2+-ATPase by actin to 25-30%. Thus the bacterial flagellar filaments are able to interact with myosin and modify its ATPase activity. Probably, these properties of filaments are caused by resemblance of flagellin and actin. For instance, the unique origin of these proteins may be the reason of such resemblance.  相似文献   

14.
Using atomic force microscopy (AFM), we find that RecA-single-stranded DNA (RecA-ssDNA) filaments, in the presence of single-stranded DNA-binding (SSB) protein, organize into left-handed bundles, which differ from the previously reported disordered aggregates formed when SSB is excluded from the reaction. In addition, we see both left- and right-handedness on bundles of two filaments. These two-filament supercoils, individual filaments, and other smaller bundles further organize into more complicated bundles, showing overall left-handedness which cannot be explained by earlier arguments that presumed supercoiling is absent in RecA-ssDNA filaments. This novel finding and our previous results regarding supercoiling of RecA-double-stranded DNA (RecA-dsDNA) filaments are, however, consistent with each other and can possibly be explained by the intrinsic tendency of RecA-DNA filaments, in their fully coated form, to order themselves into helical bundles, independent of the DNA inside the filaments (ssDNA or dsDNA). RecA-RecA interactions may dominate the bundling process, while the original conformation of DNA inside filaments and other factors (mechanical properties of filaments, concentration of filaments, and Mg(2+) concentration) could contribute to the variation in the appearance and pitch of supercoils. The tendency of RecA-DNA filaments to form ordered supercoils and their presence during strand exchange suggest a possible biological importance of supercoiled filaments.  相似文献   

15.
LOCALIZATION OF MYOSIN FILAMENTS IN SMOOTH MUSCLE   总被引:11,自引:10,他引:1       下载免费PDF全文
Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.  相似文献   

16.
Many Archaea use rotation of helical flagellar filaments for swimming motility. We isolated and characterized the flagellar filaments of Haloarcula marismortui, an archaeal species previously considered to be nonmotile. Two Haloarcula marismortui phenotypes were discriminated--their filaments are composed predominantly of either FlaB or FlaA2 flagellin, and the corresponding genes are located on different replicons. FlaB and FlaA2 filaments differ in antigenicity and thermostability. FlaA2 filaments are distinctly thicker (20-22 nm) than FlaB filaments (16-18 nm). The observed filaments are nearly twice as thick as those of other characterized euryarchaeal filaments. The results suggest that the helicity of Haloarcula marismortui filaments is provided by a mechanism different from that in the related haloarchaeon Halobacterium salinarum, where 2 different flagellin molecules present in comparable quantities are required to form a helical filament.  相似文献   

17.
Transverse sections (approximately 140 nm thick) of solid myosin filaments of the flight muscles of the fleshfly, Phormia terrae-novae, the honey bee, Apis mellifica, and the waterbug, Lethocerus uhleri, were photographed in a JEM model 200A electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. In each of these filaments it was found that the symmetry of the core and the wall was not the same. The power spectra of the images showed sixfold symmetry for the wall and threefold symmetry for the core of the filaments. The images of the filaments in each muscle were superimposed according to the sixfold center of the wall. These averaged images for all three muscles showed six pairs of subunits in the wall similar to those found in the wall of tubular filaments. From serial sections of the fleshfly filaments, we conclude that the subunits in the wall of the filaments represent subfilaments essentially parallel to the long axis of the filament. In each muscle there are additional subunits in the core, closely related to the subunits in the wall. Evaluation of serial sections through fleshfly filaments suggests that the relationship of the three subunits observed in the core to those in the wall varies along the length of the filaments. In waterbug filaments there are three dense and three less dense subunits for a total of six all closely related to the wall. Bee filaments have three subunits related to the wall and three subunits located eccentrically in the core of the filaments. The presence of core subunits can be related to the paramyosin content of the filaments.  相似文献   

18.
The interaction of microtubule-associated proteins with actin filaments has been investigated by measuring the diffusion coefficient of either the filament or the microtubule-associated proteins. Experiments were performed using the technique of fluorescence photobleaching recovery with actin labeled with iodoacetamidotetramethyl rhodamine or microtubule-associated proteins labeled with iodoacetamidofluorescein. Actin filaments composed of pure rhodamine-labeled actin are not immobilized under a variety of conditions (Tait, J. F., and Frieden, C. (1982c) Biochemistry 21, 6046-6053). We find that addition of microtubule-associated proteins to rhodamine-labeled actin in a ratio as low as 1:1000 can cause immobilization, presumably cross-linking actin into a network of nondiffusible filaments. Immobilization occurs after polymerization is complete, suggesting either a length redistribution of actin filaments, a redistribution of the cross-links between filaments, or the slow addition of actin filaments to other filaments via the microtubule-associated protein. Experiments using fluorescein-labeled microtubule-associated proteins show that these proteins are bound to actin filaments as they are formed and that binding depended on actin concentration, indicating that there are a number of binding sites on the actin filaments. However, while the actin filaments become completely immobilized, the microtubule-associated proteins become only partially immobilized suggesting at least two different classes of binding affinities. The large peptide obtained from trypsin-treated fluorescein-labeled microtubule-associated proteins is not able to immobilize actin filaments since it does not bind to the filaments.  相似文献   

19.
ABSTRACT. Filaments in the oral apparatus of Tetrahymena appear similar, but not identical, to the intermediate filaments of multicellular organisms. The mean diameter of filaments measured in the present study was 16.4 nm, but the range of variation was much greater than has been reported for intermediate filaments. The organization of filaments within the oral apparatus has been studied by indirect immunofluorescence microscopy and immunogold localization at the electron microscopical level using antiserum raised in rabbits against the major subunit protein of the oral filaments (87K). The filaments were found to be organized into cables, networks, and chambers or cages which encase the basal bodies. At the highest level of organization, the filaments connect into a rigid framework capable of maintaining the overall architecture in the absence of microtubules. Like intermediate filaments, the oral filaments are insoluble at high ionic strength, have evolutionarily non-conservative subunit proteins, are probably non-contractile, and serve to stabilize persistent cellular architecture.  相似文献   

20.
The cyanobacterium Spirulina Turpin is characterized by its regularly coiled trichomes. Under some conditions, its helical filaments can convert to abnormal morphologies, such as irregularly curved and even linear shapes, that had been considered as a permanent degeneration that could not be reversed. However, here we found that the linear filaments of Spirulina platensis Geitler could spontaneously revert to the helical form with the same morphology as the original filaments. Further studies showed that the ultrastructural, physiological, and biochemical characteristics of linear filaments were different from those of the original filaments, whereas they were the same for the reverted and the original filaments. The SDS‐PAGE analysis revealed at least four proteins or subunits related to Spirulina morphogenesis: The 21.9‐kDa and the 20.3‐kDa proteins were highly expressed in the helical filaments, whereas the 52.0‐kDa and the 31.8‐kDa proteins were highly expressed in the linear filaments. The random amplified polymorphic DNA analysis with 96 random primers showed that the genetic background of the reverted filaments was the same as that of the original filaments but distinct from that of the linear filaments. The results indicated that linear filaments of Spirulina could revert to the original morphology under certain conditions, and their other distinctive traits were regained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号