首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P L Bounds  R M Pollack 《Biochemistry》1987,26(8):2263-2269
The steroidal 3 beta-oxirane (3S)-spiro[5 alpha-androstane-3,2'-oxiran]-17 beta-ol (1 beta) is an active site directed irreversible inhibitor of the 3-oxo-delta 5-steroid isomerase from Pseudomonas testosteroni. Two steroid-bound peptides (TPS1 and TPS2) were isolated by high-performance liquid chromatography (HPLC) from the trypsin digest of enzyme inactivated with 1 beta. The modified tryptic peptides (residues 14-45 of the enzyme) were further digested with chymotrypsin, each giving rise to a single steroid-containing product (CPS1 and CPS2, respectively) derived from residues 31 to 45 of the enzyme. The modified chymotryptic peptides were isolated by HPLC, and the peptide-steroid ester linkage was reduced with sodium hydroxyborohydride. Amino acid analysis of the reduced peptides gave ca. 0.5 residue of homoserine and one less residue of aspartic acid than the corresponding unreduced peptides. Sequence analysis of both reduced chymotryptic peptides revealed that homoserine was located at position 8 in the peptide sequence, corresponding to residue 38 of the enzyme. The finding that the steroidal 3 beta-oxirane, like the 17 beta-oxiranes, inactivates the isomerase via esterification of aspartic acid-38 is strong evidence that this enzyme binds steroids in at least two orientations.  相似文献   

2.
Novel inactivators of serine proteases based on 6-chloro-2-pyrone   总被引:1,自引:0,他引:1  
The interaction of serine protease (esterases) with 6-chloro-2-pyrones was investigated. Time-dependent inactivation of chymotrypsin, alpha-lytic protease, pig liver elastase, and cholinesterase was found with 3- and 5-benzyl-6-chloro-2-pyrone, as well as 3- and 5-methyl-6-chloro-2-pyrone. No inactivation was observed with the unsubstituted 6-chloro-2-pyrone. The substituted pyrones did not inactivate papain or carboxypeptidase A, as well as a number of other nonproteolytic enzymes. The substituted chloropyrones, therefore, show considerable selectivity toward serine proteases. Analogues in which the 6-chloro substituent is replaced by H or OH do not inactivate. The presence of the halogen is, therefore, essential for inactivation. Chymotrypsin catalyzes the hydrolysis of 3-benzyl-6-chloro-2-pyrone. At pH 7.5, (E)-4-benzyl-2-pentenedioic acid is the major product, and 2-benzyl-2-pentenedioic anhydride is a minor product. The ration of hydrolysis product found to the number of enzyme molecules inactivated varies from 14 to 40. The enzyme inactivated with the 3-benzyl compound does not show a spectrum characteristic of the pyrone ring. This suggests that inactivation by 3-benzyl-6-chloro-2-pyrone occurs in a mechanism-based fashion after enzymatic lactone hydrolysis. When the enzyme is inactivated with the 5-benzyl compound, absorbance due to the pyrone ring is observed. We suggest that inactivation occurs through an active site directed mechanism involving a 1,6-conjugate addition of an active site nucleophile to the pyrone ring.  相似文献   

3.
Novel coumarinic derivatives were synthesized and tested for their inhibitory potency toward alpha-CT and HLE. Cycloalkyl esters and amides were found to be essentially inactive on both enzymes. On the opposite, aromatic esters strongly inactivated alpha-CT whereas HLE was less efficiently inhibited with dichlorophenyl ester derivatives (kinact/K(I) = 4000 M(-1) s(-1) for 36). Representative examples of amide, ester, thioester and ketone derivatives were prepared in order to evaluate the influence of the link between the coumarinic ring and the phenyl side chain. The irreversible inactivation of alpha-CT by 6-chloromethyl derivatives should be due to alkylation of a histidine residue as suggested by the amino acid analysis of the modified chymotrypsin. Conversely the inhibition of HLE was transient. Intrinsic reactivity of coumarins has been calculated using a model of a nucleophilic reaction between the ligand and the couple methanol-water. From this calculation, it appears that differences in the inhibitory potency expressed by these molecules cannot only be explained by differences in the reactivity of the lactonic carbonyl group toward the nucleophilic attack.  相似文献   

4.
α-Casein group of proteins makes up to 65% of the total casein and consists of αS1- casein, αS2- casein and other related proteins. Among all the proteases employed, chymotryptic peptides showed maximum inhibition for angiotensin converting enzyme (ACE). The degree of hydrolysis and release kinetics of the peptides during chymotrypsin hydrolysis was compared with biological activity and the potent peptides fractions were identified. The crude fraction obtained after 110 min of hydrolysis shows multifunctional activities, like ACE inhibition, antioxidant activity, prolyl endopeptidase inhibitory activity and antimicrobial activities. This fraction was further purified by HPLC and sequenced by mass spectra. This fraction constituted peptides with molecular weights of 1,205, 1,718 Da respectively. The sequencing of peptides by MALDI-TOF MS/MS shows sequences QKALNEINQF and TKKTKLTEEEKNRL from α-S2 casein.  相似文献   

5.
1. Glutamate dehydrogenase was inhibited by l-serine O-sulphate, beta-chloro-l-alanine, O-phospho-l-serine and beta-chloro-l-alanine methyl ester. With the exception of beta-chloro-l-alanine methyl ester which was an irreversible inhibitor, it was possible to reverse the inhibitory effects by dialysis. 2. Both NAD(+) and glutamate afford some protection against the inhibition due to the methyl ester. No change in the normal stimulatory effect exhibited by ADP was observed in the presence of beta-chloro-l-alanine methyl ester but the effect due to GTP was modified. 3. Irradiation of glutamate dehydrogenase in the presence of Rose Bengal produced rapid inactivation. Amino acid analysis of the inactivated enzyme showed that eight histidine residues had been destroyed in the process.  相似文献   

6.
M H Gelb  R H Abeles 《Biochemistry》1984,23(26):6596-6604
The mechanism of inactivation of chymotrypsin by 3-benzyl-6-chloro-2-pyrone has been studied. Chloride analysis of the inactivated enzyme suggests that the complex does not contain intact chloropyrone or an acid chloride. 13C NMR studies of the enzyme inactivated with 13C-enriched chloropyrones show that (1) the pyrone ring is no longer intact, (2) C-6 becomes a carboxylate group and C-2 becomes esterified to the enzyme, probably to serine-195, and (3) a double bond is present adjacent to the serine ester. The inactivated enzyme slowly regains catalytic activity with the concomitant release of (E)-4-benzyl-2-pentenedioic acid. It is concluded that double bond migration occurs during reactivation since the position of the double bond in the released diacid product is different than in the inactivator-enzyme complex. When the reactivation is carried out in [18O]H2O-enriched water, a single oxygen-18 is incorporated into the released product and is further evidence that the inactivator is bound to the enzyme only through a single ester linkage. A deuterium isotope effect on reactivation is observed when a chloropyrone deuterated at C-5 is used. This result demonstrates that removal of a proton from C-5 is required for reactivation and that isomerization of the double bond and not hydrolysis of the acyl-enzyme is rate determining. A variety of amines accelerate the rate of reactivation by functioning as general bases and not as nucleophiles. A reaction scheme is presented that accounts for the formation of the stable inactivator-enzyme complex as well as the production of two products derived from enzymatic hydrolysis of the chloropyrone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
E A Havir  K R Hanson 《Biochemistry》1975,14(8):1620-1626
Highly purified enzyme (EC 4.1.3.5) from Rhodotorula glutinis was shown by sodium dodecyl sulfate gel electrophoresis to have subunits which if not identical are closely similar in molecular weight. Like the enzyme from maize and potato [Havir, E. A., and Hanson, K. R. (1973), Biochemistry 12, 1583] it is a tetramer of molecular weight similar to 4 times 83,000. Enzyme from all three sources inactivated and labeled at the active site with 14-CH3NO2 gave on HCl hydrolysis 14-CO2, H-14-CO2H, D- and L-[14-C]aspartic acid, and unidentified radioactive products. In addition, the labeled R. glutinis enzyme gave [1,2-14-C2]glycine. The formation of the first three products is compatible with the hypothesis that the electrophilic prosthetic group of the enzyme contains the dehydroalanine imine system greater than C equals to N minus C-alpha(equals to C-beta-H2)COminus and inactivation involves attack on C-beta. The second-order rate constants for CH3NO2 inactivation varied with pH as a simple titration curve. The pKa values calculated from the curves for the three enzymes differed and were lower than the pKa of CH3NO2 by at least 1 pH unit. Apparently the inactivation process is enzyme catalyzed. Both inactivation and addition of the substrate amino group may occur with attack on C-beta.  相似文献   

8.
Inhibition of six serine proteinases (bovine trypsin and chymotrypsin, equine leucocyte proteinases type 1 and 2A, porcine pancreatic elastase type III and rabbit plasmin) by rabbit alpha 1-proteinase inhibitors F and S was studied. In each case examined, the F form reacted more rapidly. The number of moles of an enzyme inhibited by one mole of alpha 1-proteinase inhibitor in a complete reaction (molar inhibitory capacity) ranged from 0.26 (leucocyte proteinase type 1) to 1.01 (trypsin). More significantly, however, the molar inhibitory capacities of both alpha 1-proteinase inhibitors differed for the same enzymes. The highest F/S inhibitory ratio was recorded with chymotrypsin (1.88), and the lowest with elastase (0.69). These differences in molar inhibitory capacities are likely to reflect the dual nature of the reaction between the inhibitor and a proteinase, that is, either complex formation or inactivation of alpha 1-proteinase inhibitor without enzyme inhibition. No evidence was obtained to suggest that differential reactivity and differential inhibitory capacity are interdependent. The observations are consistent with the view that rabbit alpha 1-proteinase inhibitors F and S are closely related yet functionally distinct proteins.  相似文献   

9.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Zhao Z  Chen H  Li K  Du W  He S  Liu HW 《Biochemistry》2003,42(7):2089-2103
1-aminocyclopropane-1-carboxylate (ACC) deaminase is a pyridoxal 5'-phosphate (PLP) dependent enzyme which catalyzes the opening of the cyclopropane ring of ACC to give alpha-ketobutyric acid and ammonia. In an early study of this unusual C(alpha)-C(beta) ring cleavage reaction, 1-amino-2-methylenecyclopropane-1-carboxylic acid (2-methylene-ACC) was shown to be an irreversible inhibitor of ACC deaminase. The sole turnover product was identified as 3-methyl-2-oxobutenoic acid. These results provided strong evidence supporting the ring cleavage of ACC via a nucleophilic addition initiated process, thus establishing an unprecedented mechanism of coenzyme B(6) dependent catalysis. To gain further insight into this inactivation, tritiated 2-methylene-ACC was prepared and used to trap the critical enzyme nucleophiles. Our results revealed that inactivation resulted in the modification of an active site residue, Ser-78. However, an additional 5 equiv of inhibitor was also found to be incorporated into the inactivated enzyme after prolonged incubation. In addition to Ser-78, other nucleophilic residues modified include Lys-26, Cys-41, Cys-162, and Lys-245. The location of the remaining unidentified nucleophile has been narrowed down to be one of the residues between 150 and 180. Labeling at sites outside of the active site is not enzyme catalyzed and may be a consequence of the inherent reactivity of 2-methylene-ACC. Further experiments showed that Ser-78 is responsible for abstracting the alpha-H from d-vinylglycine and may serve as the base to remove the beta-H in the catalysis of ACC. However, it is also likely that Ser-78 serves as the active site nucleophile that attacks the cyclopropane ring and initiates the fragmentation of ACC, while the conserved Lys-51 is the base required for beta-H abstraction. Clearly, the cleavage of ACC to alpha-ketobutyrate by ACC deaminase represents an intriguing conversion beyond the common scope entailed by coenzyme B(6) dependent catalysts.  相似文献   

11.
S-Adenosyl-L-homocysteine (SAH) was converted to 2′-O-[(R)-formyl(adenin-9-yl)methyl]-3′-S-homocysteinyl-3′-deoxy-(R)-glyceraldehyde (SAH dialdehyde) by periodic acid oxidation. SAH dialdehyde was then reduced with sodium borohydride to the corresponding diol, 2′,3′-acyclic SAH. SAH dialdehyde, but not 2′,3′-acyclic SAH, was found to inhibit histamine-N-methyltransferase (HMT). Neither analog showed significant inhibitory activity toward other methyltransferases. The inhibition of HMT by SAH dialdehyde was irreversible with the inactivation following first-order kinetics. A kinetic analysis suggests the formation of a dissociable enzyme-inhibitor complex prior to inactivation. The enzyme could be protected from inactivation by inclusion of S-adenosyl-L-methionine in the preincubation mixture.  相似文献   

12.
Burst kinetics in the inactivation of alpha-chymotrypsin by halo enol lactones 1 and 2 was observed. These results are consistent with a kinetic scheme that includes partitioning of the first acyl enzyme between transient inhibition and permanent inactivation. Partition ratios were estimated from the measured rates of the irreversible inactivation and the rates of deacylation of the second acyl enzyme. Halo enol lactones with a large burst resulted in small partition ratios, indicating a high potency of inactivation. We also observed enantioselectivity in the burst of inactivation such that the R enantiomer of lactone 1 showed a large burst, while the S enantiomer showed a little burst. This suggests that it is the R enantiomer whose binding is better suited for the covalent derivatization of the enzyme, or whose reactive halomethyl group is in an unfavorable position for the hydrolysis by water.  相似文献   

13.
A series of para-ring-substituted (E)- and (Z)-1-aryl-2-fluorocyclopropylamines were examined as inhibitors of recombinant human liver monoamine oxidase A (MAO A) and B (MAO B). Unlike the parent 1-phenylcyclopropylamine, which is a selective inhibitor of MAO B, both (E)- and (Z)-diastereomers of derivatives having fluorine at the 2-position of the cyclopropane ring were potent and selective irreversible inhibitors of MAO A. Both electron releasing groups (Me, OMe) and electron attracting groups (Cl, F) substituted in the para-position caused a modest increase in activity. Geminal difluoro-substitution caused a loss of potency of 100-fold compared to either (E)- or (Z)-monofluorinated analogue. Surprisingly, (1S,2R)-2-fluoro-1-phenylcyclopropylamine and the (1R,2S)-enantiomer were essential equally potent as inhibitors of MAO A and MAO B. None of the tested 1-aryl-2-fluorocyclopropylamines exhibited significant inhibition of tyramine oxidase.  相似文献   

14.
Adenosine 5′-diphosphate (5′-ADP) was oxidized with periodic acid to 2′-O-[(R)-formyl(adenin-9-yl)methyl]-3′-diphosphate-3′-deoxy-(S)-glyceraldehyde (ADP-dialdehyde). ADP-dialdehyde, but not 2′, 3′-acyclic ADP, inhibited phenol-sulfotransferase (PST). The inhibition of PST by ADP dialdehyde was irreversible. A kinetic analysis of the enzyme inactivation suggests the formation of a dissociable enzyme-inhibitor complex prior to the inactivation step. PST could be completely protected from inactivation by the inclusion of 3′-phosphoadenosine-5′-phosphosulfate in the preincubation mixture. These results are consistent with ADP-dialdehyde being an affinity labeling reagent for PST.  相似文献   

15.
In a previous investigation [Daniels, S. B., Cooney, E., Sofia, M. J., Chakravarty, P. K., & Katzenellenbogen, J. A. (1983) J. Biol. Chem. 258, 15046-15053], we demonstrated that alpha-aryl-substituted five- and six-membered ring halo enol lactones were effective inhibitors of chymotrypsin, and we proposed that they reacted by an enzyme-activated mechanism: acyl transfer to the active site serine generates a halomethyl ketone that remains tethered in the catalytic site until it alkylates an accessible nucleophilic residue. In this study, we have investigated in greater detail the process of chymotrypsin inactivation by an alpha-naphthyl-substituted five- and six-membered bromo enol lactone. Inactivation by both compounds appears to be active site directed, since the time-dependent inactivation is retarded by competing substrate. The possible involvement of a paracatalytic mechanism for inactivation (generation of a free, rather than active site bound, inactivating species) was investigated by comparing the inactivation efficiencies of the lactones with that of the bromomethyl keto acid hydrolysis products. The bromomethyl ketone derived from the five-membered lactone is ineffective, whereas that derived from the six-membered lactone is highly efficient. However, the possible involvement of the free keto acid in chymotrypsin inactivation by the six-membered lactone is ruled out by experiments involving selective scavenging. The long-term inactivation of chymotrypsin requires the presence of the bromine substituent and appears to involve an alkylation rather than an acylation reaction (hydrazine resistant). Furthermore, a 1:1 lactone:enzyme stoichiometry is demonstrated with the 14C-labeled six-membered lactone. These results are consistent with the mechanism-based inactivation process previously presented.  相似文献   

16.
1. Chymotrypsin treatment of chloroplast membranes inactivates Photosystem II. The inactivation is higher when the activity is measured under low intensity actinic light, suggesting that primary photochemistry is preferentially inactivated. 2. Membrane stacking induced by Mg2+ protects Photosystem II against chymotrypsin inactivation. When the membranes are irreversible unstacked by brief treatment with trypsin, Mg2+ protection against chymotrypsin inactivation of Photosystem II is abolished. 3. The kinetics of inactivation by chymotrypsin of Photosystem II indicates that membrane stacking slows down, but does not prevent, the access of chymotrypsin to Photosystem II, which is mostly located within the partition zones. 4. It is concluded that a partition gap exists between stacked membranes of about 45 A, the size of the chymotrypsin molecule. 5. The kinetics of inhibition of the chloroplast flavoprotein, ferredoxin-NADP reductase, bt its specific antibody is not affected by membrane stacking. This indicates that this enzyme is located outside the partition zones.  相似文献   

17.
Human aldehyde dehydrogenase (EC 1.2.1.3) isozymes E1 and E2 were irreversibly inactivated by stoichiometric concentrations of the haloenol lactones 3-isopropyl-6(E)-bromomethylene tetrahydro-pyran-2-one and 3-phenyl-6(E)-bromomethylene tetrahydro-pyran-2-one. No inactivation occurred with the corresponding nonhalogenated enol lactones. Both the dehydrogenase and esterase activities were abolished. Activity was not regained on dialysis or treatment with 2-mercaptoethanol. The inactivation was subject to substrate protection: NAD afforded protection which increased in the presence of the aldehyde-substrate competitive inhibitor chloral. Saturation kinetics gave positivey-axis intercepts, allowing the determination of binding constants. Inactivation stiochiometry determined with14C-labeled 3-(1-naphthyl)-6(E)-iodomethylene tetrahydropyran-2-one was found to correspond to the active-site number. The nonhalogenated lactone, 3-(1-naphthyl)-6(E)-methylene tetrahydropyran-1-one was shown to be a substrate for aldehyde dehydrogenase via its esterase function. Inactivation and enzymatic hydrolysis occurred within a similar time frame. Opening of the lactone ring to form enzyme-acyl intermediate with active site cysteine appears to be a necessary prerequisite to inactivation, since halogen in the lactone ring is nonreactive. Thus, the inactivation of aldehyde dehydrogenase by haloenol lactones is mechanism-based. Inactivation by haloenol lactones occurs in a manner analogous to that of chymotrypsin with which aldehyde dehydrogenase shares esterase activity and binding of haloenol lactones at the active site.  相似文献   

18.
Two different immobilized chymotrypsin derivatives were used to synthesize kyotorphin, using N-benzoyl-L-tyrosine ethyl ester and L-arginine ethyl ester as substrates, in water-DMF media. The first was adsorbed onto Celite particles and the second was multipoint covalently attached into polyacrylamide gel. In all cases, the conversion of the carboxyl substrate was carried out in first-order reaction conditions. For the adsorbed enzyme, the reaction kinetics deviated from first-order likely due to a fast irreversible inactivation of enzyme during the reaction time even at low DMF concentration (15-20% v/v). The covalent attachment of enzyme resulted in elimination of irreversible activity loss by organic solvent up to 60% (v/v) of DMF. The catalytic activity of the covalent derivative was conserved as appropriate for performing a synthetic reaction up to 60% v/v of DMF (in comparison to 30% v/v for the adsorbed derivative), showing a clear improvement in its stability against reversible denaturation by this solvent. The selectivity of the synthetic reaction was slightly enhanced (from 40-50%) with the increase in DMF concentration to 80% v/v, but it was significantly improved (to 80%) when L-argininamide was used as nucleophile.  相似文献   

19.
Pyridoxal phosphate-dependent histidine decarboxylase from Morganella morganii AM-15 was inactivated by (S)-alpha-fluoromethylhistidine by a pseudo first-order reaction, with KI and k inact values of 0.1 mM and 32.2 min-1, respectively, and was most efficient at pH 6.5-7.0. Both L-histidine and the competitive inhibitor, L-histidine methyl ester, protected against inactivation. The apoenzyme was not inactivated. These findings indicate that inhibition is a mechanism-based process. Under optimal conditions a single molecule of alpha-fluoromethylhistidine inactivates one enzyme subunit, indicating that no escaping side reaction occurs during the inactivation process. The bound inactivator is not released by dialysis of the native protein but is released upon denaturation by heat or urea. This released product was not fully characterized, but it contains the tritium of ring-labeled alpha-fluoromethyl-[3H]histidine, exhibits the spectral properties of a 3-hydroxypyridine derivative, and does not yield any amino acids on hydrolysis. The label was much more stable following borohydride reduction of the inactivated protein, and a tryptic peptide containing the modified residue was isolated. Sequencing of this peptide and the corresponding peptide from the native enzyme revealed that the inactivator binds to a serine residue of the holoenzyme. Two P-pyridoxyl peptides from tryptic or CNBr digests of the NaBH4-reduced enzyme were also isolated. Sequence and compositional data obtained with these peptides showed that the serine residue to which the inhibitor binds is not near the lysine residue that binds pyridoxal-P in the primary sequence of the protein, although the two residues must be near one another in the three-dimensional structure to account for these results. A speculative mechanism for inactivation, consistent with the experimental findings, is presented.  相似文献   

20.
beta-D-Glucopyranosyl-(1S and 1R)-epoxyethanes (I and II), 1-(beta-D-glucopyranosyl)-(2R and 2S)-2,3-epoxypropanes (III and IV), beta-D-glucopyranosyl isothiocyanate (V) and beta-D-galactopyranosylepoxyethane (VI) are active-site-directed irreversible inhibitors of sweet-almond beta-glucosidase B (beta-D-Glucoside glucohydrolase, EC 3.2.1.21). Formation of the covalent bond is preceded by the binding of these inhibitors in the active site of the enzyme. This is testitified by the competitive character of inhibition of beta-glucosidase component B by compounds I-VI at the early period and by the protection of the enzyme from inactivation by its competitive inhibitors D-glucose and 1,5-D-gluconolactone. Epoxides I-IV are bound covalently with componet B at a molar ratio 1 : 1 as shown with the aid of 14C-labelled inhibitors. The release of the label from modified enzyme (E-I covalent) by treatment with hydroxylamine suggests the formation of an ester bond between inhibitors I-IV and the carboxyl group of the enzyme active site. The pH dependence curve of the inactivation rate of beta-glucosidase B is of a bell-shaped form for V and of a sigmoid character for I-IV and points to the involvement of the active site groups with pKa 5.6-5.9 and 4.2-4.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号